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SUMMARY

In stochastic analysis the knowledge of cross-correlation coe$cients is required in order to combine
the response of the modal Single-Degree-Of-Freedom (SDOF) oscillators for obtaining the nodal response.
Moreover these coe$cients play a fundamental role in the seismic analysis of structures when the response
spectrum method is used. In fact they are used in some modal combination rules in order to obtain the
maximum response quantities starting from the modal maxima. Herein a method for the evaluation of
the cross-correlation coe$cients for non-classically damped systems is presented. It is de"ned in the time
domain instead of the frequency domain as usually encountered in the literature. Although non-classically
damped structures possess complex eigenproperties, the great advantage in using this approach lies in the
fact that the evaluation of these coe$cients does not require complex quantities. Moreover a further
particularization of the presented method allows a simple application of the spectrum analysis requiring
only one response spectrum for an assigned damping ratio. Copyright ( 1999 John Wiley & Sons, Ltd.

KEY WORDS: cross-correlation coe$cients; modal combination rule; non-classically damped systems;
response spectrum method

1. INTRODUCTION

In many cases of practical interest the dynamic response of structures can be accurately
determined once the undamped normal modes are evaluated. However this approach fails for
particular structures, like the base-isolated buildings, the structures composed by several sub-
structures and so on. Indeed in the latter cases the damping matrix has to be accounted for, which
leads to complex eigenproperties.1 In literature these structures are known as non-classically
damped. The application of the traditional modal analysis to non-classically damped structures
leads to a set of coupled second-order di!erential equations in the modal subspace. In order to
uncouple these di!erential equations the complex eigenproperties have to be evaluated, obtaining



a set of "rst-order uncoupled di!erential equations with complex coe$cients.2,3 It follows that
the real response in the nodal subspace is evaluated by combining complex quantities.

The cross-correlation coe$cients are extensively adopted in both stochastic and response
spectrum analysis of structural systems under seismic input.4 Indeed, by using these coe$cients,
the nodal response can be obtained by combining the response of SDOF oscillators, where the
response has to be intended in terms of variances in the stochastic analysis and in terms of
maximum value in the spectrum analysis. The cross-correlation coe$cients are usually evaluated
in the frequency domain for both classically damped and non-classically damped systems,
involving, in this last case, complex quantities.5~9

Speci"cally, in the framework of the response spectrum method, the maximum response of
a system is estimated by "rst determining the biggest values of the modal response, from the given
response spectra of the given input, then by combining these maxima using an appropriate
combination rule, whose coe$cients are connected to the cross-correlation coe$cients.10 It has
been recently recognized that for non-classically damped systems the proposed combination rules
are quite di!erent from the rules available for classically damped systems. Indeed, in obtaining the
nodal response, the velocity response spectrum 11,12 or the cosine spectrum,13 are necessary, in
addition to the displacement response spectrum used in the combination rule of classically
damped structures. Alternatively, the cross-correlation coe$cients of non-classically damped
systems are obtained by introducing corrective terms, accounting for the complex eigenproper-
ties, in the coe$cients available for classical damped ones.14,15 These methods, beyond the
di$culties connected to solving a complex eigenproblem, show another drawback when applied
in the framework of the spectrum method. In fact they need the response spectra for those values
of damping ratio which are obtained by the complex analysis. But the design maximum spectra,
the so-called target ones, are usually given for one (m"0)05), or few (m"0)01, 0)02, 0)05, 0)2)
values of damping ratio and only some approximated relationships are given in order to "nd the
spectra for di!erent values of damping ratio.

In this paper a procedure for the evaluation of the cross-correlation coe$cients in the time
domain for non-classically damped systems is proposed. This procedure requires neither the
evaluation of the complex eigenproperties of the structure nor the velocity or cosine spectra.
Indeed, all the quantities necessary to evaluate the cross-correlation coe$cients are real ones.

Moreover, the presented method has the advantage, with respect to those already presented in
literature, that always the same results are obtained if the damping ratio is "xed equal to the value
for which the response spectra are given. Hence, the above cited drawback, related to the
approximated evaluation of the response spectrum di!erent from the target one, is overcome.
The last numerical example of the present work shows that the peak response spectra method can
be easily applied to some kinds of structures, such as the isolated buildings, although it is not
usually applied for such structures.

2. PRELIMINARY CONCEPTS

2.1. Equations of motion

Let us consider a discretized structural system with n dynamic degrees of freedom, subjected to
the ground acceleration uK

'
(t), whose dynamic equilibrium equation can be written as follows:

MuK (t)#Cu5 (t)#Ku(t)"!MsuK
'
(t) (1)
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where M and K are the (n]n) mass and sti!ness positive-de"nite matrices, respectively, C is the
n]n damping positive or semipositive-de"nite matrix, u, u5 and uK are the (n]1) vectors of nodal
displacements, velocities and accelerations, respectively, and s is the (n]1) vector of in#uence
coe$cients.

For both classically and non-classically damped structures it has been recognized that operat-
ing in the modal subspace is more convenient than in the nodal space.1~3,16,17 In order to reduce
the number of the variables, the following co-ordinate transformation is usually adopted:

u (t)"Uq(t) (2)

where q is the vector, or order (m]1) (with m)n), or generalized coordinates and U is the (n]m)
modal matrix, normalized with respect to mass matrix and given by the solution of the following
eigenproblem:

KU"MUX2 (3)

where X is a diagonal matrix listing the "rst m few natural circular frequencies.
By using equation (2), the di!erential equations of motion in the modal sub-space can be

written as follows:

qK (t)#Nq5 (t)#X2q (t)"puK
'
(t) (4)

where p is the vector of participation coe$cients and N is the generalized damping matrix, given
respectively by

p"!UTMs, N"UTCU (5)

where the apex ¹ means transpose. For non-classically damped systems, the matrix N is not
diagonal. The relative maximum magnitude of the o!-diagonal elements of N with respect to the
diagonal elements can be expressed by the following coupling index:18

a"maxA
$2

ij
$
ii
$
ij
B, iOj (6)

which measures the degree of non proportionality of the damping. Notice that, for the semiposi-
tive de"niteness of the damping matrix, the coupling index a is always less than one. By making
use of the 2m state variable vector approach, equation (4) can be written as a set of 2m "rst-order
di!erential equations as follows:

z5 (t)"Dz(t)#VpuK
'
(t) (7)

where

z"A
q

q5 B, D"A
0
m

!X2

I
m

!NB, V"A
0
m

I
m
B (8)

In these relationships I
m

is the identity matrix and 0
m

is the zero matrix both of order (m]m).
Solution of equation (7) can be pursued by solving the following eigenproblem:

DW"WK (9)
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where K is the diagonal matrix listing the complex eigenvalues "
k
(k"1, 2,2, m) of the matrix

D and W is the complex eigenvector matrix orthonormalized with respect to the following matrix:

A"A
N
I
m

I
m

0
m
B (10)

The vector solution of equation (7) can be written as follows:9,19

z (t)"
m
+
k/1

(L
k
pd

k
(t)#S

k
pdQ

k
(t)) (11)

where

L
k
"!2Re("*

k
t

k
tT

k
)AV; S

k
"2Re(t

k
tT
k
)AV (12)

where Re( ) ) means real part of ( ) ), the apex * indicates the complex conjugate and t
k
is the kth

column of the matrix (. In equation (11) d
k

and dQ
k

can be evaluated as the solution of the
following di!erential equation:

dG
k
(t)#2b

k
c
k
dQ
k
(t)#c2

k
d
k
(t)"uK

'
(t); d

k
(0)"0, dQ

k
(0)"0 (13)

in which the natural damping ratio b
k
and the natural frequency c

k
are obtained from the complex

eigenvalue "
k

as follows:

b
k
"!

Re("
k
)

c
k

, c
k
"D"

k
D (14)

D( ) )D being the modulus of ( ) ).

2.2. Covariance response for stationary stochastic input

Let us consider the excitation uK
'
(t) as a zero-mean Gaussian stationary process. Then, from

a probabilistic point of view, the response is fully characterized by the covariance matrix, whose
elements can be evaluated as follows:

E[z*2+ (t)]"
m
+
j/1

m
+
k/1

(L
j
?L

k
)p*2+E[d

j
(t)d

k
(t)]#(L

j
?S

k
)p*2+E[d

j
(t)dQ

k
(t)]

#(S
j
?L

k
)p*2+E[dQ

j
(t)d

k
(t)]#(S

j
?S

k
)p*2+E (dQ

j
(t)dQ

k
(t)] (15)

in which E[( ) )] means average of ( ) ), ? indicates the Kronecker product of two matrices (see
Appendix) and the exponent into square brackets indicates the Kronecker power. i.e.

E[z*2+(t)]"E[z (t)? z(t)] (16)

It is easy to show that the quantity here expressed is the vectorized form of the covariance matrix.
Let us introduce the following cross-correlation coe$cients:

o
0,jk

"

E[d
j
(t)d

k
(t)]

p
dj
p
dk

; o
1,jk

"

E[d
j
(t)dQ

k
(t)]

p
dj
p
d
0
k

; o
2,jk

"

E[dQ
j
(t)dQ

k
(t)]

p
d
0
j
p
d
0
k

(17)

in which p
dj
"JE[d2

j
(t)] and p

d
0
j
"JE[dQ 2

j
(t)] are the standard deviations of the displacement

d
j
(t) and velocity dQ

j
(t), respectively. By assuming that the relationship p

d
0
j
"s

j
p
dj

holds, where s
j
is
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a suitable coe$cient, coincident with the natural frequency c
j
in the case of white noise input, then

equation (15) can be rewritten as follows:

E[z*2)(t)]"
m
+
j/1

m
+
k/1

R
jk

p*2+p
dj
p
dk

(18)

where R
jk

is a matrix of order (2m)2](2m)2 given as follows:

R
jk
"(L

j
?L

k
)o

0, jk
#s

k
(L

j
?S

k
)o

1,jk
#s

j
(S

j
? L

k
)o

1,kj
#s

j
s
k
(S

j
?S

k
)o

2,jk
(19)

Notice that the cross-correlation coe$cients o
0,jk

, o
1,jk

and o
2,jk

can be evaluated once the
probabilistic parameters of the excitation are "xed. For example, for white noise excitations, the
expressions of these coe$cients have been provided in closed form by Der Kiureghian.10

2.3. Evaluation of the peak response by the response spectrum

A generic quantity s (t) of interest, connected to the structural response, such as the stress at
a point or the internal force in a member, can be expressed as a linear combination of the nodal
displacements. i.e.

s(t)"lTu(t)"lTUq(t) (20)

It is well recognized that the mean of the peak structural response s(t) can be approximately
expressed as a combination of the mean values of maximum modal responses. Each maximum
modal response is obtained in terms of the ordinate of the mean response spectrum, associated
with the corresponding modal frequency and damping factor. The combination coe$cients of
the modal responses for obtaining the nodal peak response are usually derived by assuming:4,6
(i) the input process as a Gaussian white noise; (ii) the mean value of the peak of the structural
response proportional to its standard deviation by means of a coe$cient called peak factor; (iii)
the peak factor to be approximately the same for the response of interest s(t) and modal
responses. It follows that, by means of the assumption of white noise input (in this case s

j
"c

j
),

after very simple algebra, the stationary variance of s(t), by taking into account equations
(18)}(20), can be written as follows:

E[s2(t)]"
m
+
j/1

m
+
k/1

Ma
j
a
k
o
0,jk

#c
k
a
j
c
k
o
1, jk

#c
j
a
k
c
j
o
1,kj

#c
j
c
k
c
j
c
k
o
2,jk

Np
dj
p
dk

(21)

where

a
j
"(lTU 0T )L

j
p, c

j
"(lTU 0T )S

j
p (22)

0 being the zero vector of order (m]1).
Hence the mean value of the peak of the structural response can be written as follows:

max Ds(t) D"S
m
+
j/1

m
+
k/1

e
j
e
k
o
jk

D(b
j
, c

j
)D(b

k
, c

k
) (23)

where D(b
j
, c

j
) is the conventional response spectrum representing the mean peak response of the

oscillator characterized by the frequency radian c
j

and the damping ratio b
j
, de"ned into
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equation (14) as functions of the complex eigenvalues of the dynamical system, while o
jk

is the
correlation coe$cient given by

o
jk
"Ma

j
a
k
o
0,jk

#c
k
a
j
c
k
o
1,jk

#c
j
a
k
c
j
o
1,kj

#c
j
c
k
c
j
c
k
o
2,jk

N/(e
j
e
k
) (24)

The normalizing coe$cients e
j
appearing into equations (23) and (24) are given by the following

equation:

e
j
"Ja2

j
#c2

j
c2
j

(25)

The e
j
coe$cients have been chosen in such a way that o

jk
"1 for j"k; in this case equation (23)

leads to

max Ds(t) D"S
m
+
i/1

e2
i
D2(b

i
, c

i
) (26)

which coincides with the traditional SRSS (Square Root of the Squares Sum) combination rule of
maxima.

It is important to note that, by adopting equation (23), it is possible to derive both modi"ed
CQC (Complete Quadratic Combination)15 and modi"ed Rosenblueth nodal14 formulations.
Indeed the "rst one, proposed by Sinha and Igusa15, assumes that o

1,jk
"0 and o

2, jk
"o

0,jk
.

While in the approach proposed by Villaverde14 besides the assumption o
1,jk

"0 the white noise
with limited length is considered.

3. PROPOSED APPROACH

3.1. Evaluation of the covariances

The previously described approach for the evaluation of the covariances of the response
requires the solution of the eigenproblem (9) which leads to complex eigenproperties. Moreover,
the real matrices and coe$cients appearing in the combination rule (23) are evaluated by using
the complex algebra. Here an alternative approach able to evaluate the covariances of the
response without requiring the solution of the eigenproblem (9) is presented. Hence the covarian-
ces of the response are evaluated making use of real quantities only. The input is assumed to be
a white noise process, as considered by the other approaches available in literature. However the
formulation here presented for the evaluation of the cross-correlation coe$cients could be
extended to the case of "ltered input.

In order to describe this alternative approach let us rewrite equation (7) as follows:17,20

z5 (t)"(D
0
#D

1
)z (t)#VpuK

g

(t) (27)

in which

D
0
"A

0
m

!X2

I
m

!N
$
B ; D

1
"A

0
m

0
m

0
m

!N
&
B (28)

In these equations N
$

is a diagonal matrix whose non-zero elements are the elements on the
principal diagonal of N, while N

&
is a symmetric matrix having zero elements along the principal

diagonal and the o!-diagonal elements equal to the corresponding o!-elements of matrix N.
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Hence it is: N
&
"N!N

$
. Obviously for classically damped systems D

1
"0 and N

&
"0. Note that

the matrix D
0

de"ned in equation (28) can be regarded as the dynamical matrix of a classically
damped system having the ith natural circular frequency u

i
")

ii
and the ith damping ratio

m
i
"$

ii
/(2)

ii
).

By using the Kronecker algebra, it can be shown that, when uK
'
(t) is a Gaussian white noise

input, the stationary response covariances can be evaluated as follows:20

E[z*2+(t)]"!2nS
0
D~1

2
V*2+p*2+ (29)

where S
0

is the power spectral density of the white noise and D
2

is the following matrix:

D
2
"D? I

2m
#I

2m
?D (30)

By considering that D"D
0
#D

1
, we can write D

2
as follows:

D
2
"D

2,0
#D

2,1
"D

2,0
(I*2+
2m

#D~1
2,0

D
2,1

) (31)

where

D
2,0

"D
0
? I

2m
#I

2m
?D

0
, D

2,1
"D

1
? I

2m
#I

2m
?D

1
(32)

Substitution of equation (31) into equation (29) leads to

E[z*2+ (t)]"BE[z*2+
0

(t)] (33)

where

B"(I*2+
2m

#D~1
2,0

D
2,1

)~1 (34)

and E[z*2+
0

] is a vector listing the stationary covariances of the modal state variables of the
classically damped system which are governed by the following di!erential equations:

qK
0
(t)#N

$
q5
0
(t)#X2q

0
(t)"puK

'
(t) (35)

Hence zT
0
"(qT

0
q5 T
0
). The covariances vector E[z*2+

0
] can be obtained by means of the following

simple relationship:

E[z*2+
0

]"!2nS
0
D~1

2,0
V*2+p*2+ (36)

If the Kronecker product z
0
(t) ? z

0
(t) is inserted into equation (33) in such a way that the

following relationship holds:

E[z
0
(t)x z

0
(t)]"E A

q*2+
0

(t)

q
0
(t) ? q5

0
(t)

q5
0
(t) ? q

0
(t)

q5 *2+
0

(t) B (37)

where the symbol x means block Kronecker product (see Appendix), then equation (33) can be
rewritten as follows:

E[z*2+ (t)]"B
0
E[q*2+

0
(t)]#B

1
E[q

0
(t) ? q5

0
(t)]#B

2
E[q5

0
(t)? q

0
(t)]

#B
3
E[q5

0
(t) ? q5

0
(t)] (38)

in which the matrices B
j
are de"ned by means of a partition of order (4m2]m2) of the matrix B, as
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follows:

B"(B
0
, B

1
, B

2
, B

3
) (39)

It is easy to show that the covariances introduced into equation (37) can be related to the
covariances of the responses of the following di!erential equations:

gK
k
(t)#2m

k
u

k
gR
k
(t)#u2

k
g
k
(t)"uK

'
(t), g

k
(0)"0, gR

k
(0)"0; k"1, 2,2,m (40)

by means of the following expressions:

E[q
0,j

(t)q
0,k

(t)]"p
j
p
k
E[g

j
(t)g

k
(t)], E[q

0,j
(t)qR

0,k
(t)]"p

j
p
k
E[g

j
(t)gR

k
(t)];

E[qR
0,j

(t)q
0,k

(t)]"p
j
p
k
E[gR

j
(t)g

k
(t)], E[qR

0,j
(t)qR

0,k
(t)]"p

j
p
k
E[gR

j
(t)gR

k
(t)]

(41)

In this way, equation (38) gives

E[z*2+(t)]"
m
+
j/1

m
+
k/1

b
0,jk

E[g
j
(t)g

k
(t)]p

j
p
k
#b

1,jk
E[g

j
(t)gR

k
(t)]p

j
p
k

#b
2,jk

E[gR
j
(t)g

k
(t)]p

j
p
k
#b

3,jk
E[gR

j
(t)gR

k
(t)]p

j
p
k

(42)

where b
i,jk

(with i"0, 1, 2, 3) is the [ j#(k!1)m]th column of the matrix B
i
. It is important to

note that equation (42) gives the modal covariances, without any approximation, exactly as
equation (15).

By comparing equations (13) and (40), we observe that in the "rst one the radian frequency
c
k

and the damping ratio b
k

are evaluated as functions of complex eigenvalues, while in the
second one the corresponding quantities u

k
and m

k
are evaluated by solving only the real

eigenproblem (3).
Moreover, by introducing the following cross-correlation coe$cients

o6
0,jk

"

E[g
j
g
k
]

p
gj
p
gk

, o6
1,jk

"

E[g
j
gR
k
]

p
gj
p
g5 k

, o6
2, jk

"

E[gR
j
gR
k
]

p
g5 j
p
g5 k

(43)

and, taking into account that for white noise input is p
g5 j
"u

j
p
gj
, lastly we can write

E[z*2+(t)]"
m
+
j/1

m
+
k/1

r6
jk
p
j
p
k
p
gj
p
gk

(44)

where r6
jk

is a vector of order 4m2 given as follows:

r6
jk
"b

0,jk
o6
0,jk

#u
k
b
1, jk

o6
1,jk

#u
j
b
2,jk

o6
1,kj

#u
j
u

k
b
3,jk

o6
2,jk

(45)

It is important to note that, by applying the proposed procedure, the modal response can be
evaluated without solving complex eigenproblems, but only solving the traditional real eigen-
problem (3) of a classically damped system. It follows that by applying this procedure it is possible
to reduce drastically the computational e!ort.

Once the modal covariances E[z*2+ (t)] are evaluated, the nodal ones can be obtained by means
of the following relationship:

ECA
u(t)

u5 (t)B
*2+

D"A
U
0
m

0
m

UB
*2+

E[z*2+ (t)] (46)

where the block Kronecker product has to be applied.
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3.2. Evaluation of the peak response

It can be easily shown that, if the variances of the modal response are evaluated by means of
equation (44), then the stationary variance of the reference structural response s(t) assumes the
following form:

E[s2(t)]"
m
+
j/1

m
+
k/1

[b
0,jk

o6
0,jk

#u
k
b
1,jk

o6
1, jk

#u
j
b
2,jk

o6
1,kj

#u
j
u

k
b
3,jk

o6
2,jk

]p
gj
p
gk
p
j
p
k

(47)

where

b
i,jk

"(lTU 0T)*2+b
i, jk

; i"0, 1, 2, 3 (48)

and the block Kronecker product has to be applied. Hence, by assuming the peak factor related to
s(t) as those related to the modal responses g

j
(t), the maximum of s (t) can be estimated as follows:

max Ds(t) D"S
m
+
j/1

m
+
k/1

o6
jk
p
j
p
k
DM (m

j
, u

j
)DM (m

k
, u

k
) (49)

where DM (m
j
, u

j
) is given by the ordinate of the mean peak displacement spectrum corresponding

to the radian frequency u
j
and the damping ratio m

j
. The cross-correlation coe$cients appearing

in equation (49) are given by

o6
jk
"b

0,jk
o6
0,jk

#u
k
b
1,jk

o6
1, jk

#u
j
b
2,jk

o6
1,kj

#u
j
u

k
b
3,jk

o6
2, jk

(50)

In this way a modal combination rule for non-classically damped system, which does not
require the solution of any complex eigenproblem, has been introduced. Similar to methods using
the complex analysis, the presented approach su!ers the draw-back connected to the requirement
of various response spectra for di!erent values of damping ratio. This fact can represent
a problem because the response spectra are usually given for some particular values of damping
ratios and only approximated relationships are available in order to obtain the response spectra
for di!erent values of the damping ratio. In the following section of modi"cation of the presented
approach is presented in order to avoid this inconvenience.

4. PROPOSED APPROACH WITH FIXED DAMPING RATIO

In all the national and international codes the reference response spectra are given for "xed
values of the damping ratio (the so-called target response spectra are usually given for m"0)05
and in some cases for m"0)01, 0)02 and 0)1) and suitable relationships are provided in order to
obtain the corresponding spectrum for di!erent values of damping ratios. Unfortunately the
spectra obtained by means of these relationships show, in some cases, a very poor accuracy. It is
evident that all the modal combination rules available for non-classically damped systems,
included the approach presented in the previous sections are a!ected by this problem. In order to
overcome this drawback in this section a modi"cation of the approach presented in the previous
section is proposed.
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To this purpose let us rewrite equation (27) as follows:

z5 (t)"(D<
0
#D<

1
)z (t)#VpuK

'
(t) (51)

where now

D<
0
"A

0
m

!X2

I
m

!2mXB, D<
1
"A

0
m

0
m

0
m

!N)
&
B (52)

in which m is the value of the damping ratio chosen by the reference displacement spectrum and
N<
&
"N!2mX.
Application of the procedure shown in the previous section to equation (51) leads to the

following expression for the modal combination:

max Ds(t) D"S
m
+
j/1

m
+
k/1

o(
jk
p
j
p
k
D(m, u

j
)D(m, u

k
) (53)

where

o(
jk
"bK

0,jk
o(
0,jk

#u
k
bK
1,jk

o(
1, jk

#u
j
bK
2,jk

o(
1,kj

#u
j
u

k
bK
3,jk

o(
2, jk

(54)

where the cross-correlation coe$cients o(
i, jk

(with i"0, 1, 2) are those related to SDOF
oscillators characterized by the value m of the damping ratio and by the radian frequencies u

j
and

u
k
. In equation (54) the terms bK

i, jk
(with i"0, 1, 2, 3) are related, by means of relationships

analogous to those given in equations (39) and (48), to the matrix B< given by

B<"(I *2+
2m

#D< ~1
2,0

D<
2,1

)~1 (55)

in which

D<
2,0

"D<
0
x I

2m
#I

2m
xD<

0
, D<

2,1
"D<

1
x I

2m
#I

2m
xD<

1
(56)

The modal combination rule expressed by means of equation (53) allows us to consider the
non-classically damped systems as the classically damped ones characterized by a given value of
the damping ratio. This can be very useful in the design codes of this kind of structures.

5. NUMERICAL EXAMPLES

Since the proposed procedures give the exact response variances of MDOF structural systems
subjected to a base excitation approximated as a white noise process, in this section the attention
is devoted to the study of the accuracy in the evaluation of the cross-correlation coe$cients and in
the use of the modal combination rules. In particular the maximum peak of a response quantity of
interest is obtained by using the proposed methods, and the results are compared with those
obtained by other methods proposed in literature.

The approximated results are compared with a corresponding reference value that is an
estimation of the maximum value of the response quantity of interest. Here this is obtained by
means of the following steps: (a) evaluation of the exact response power spectral density of the
response quantity of interest; it is obtained exactly, without the use of any modal transformation,
under the assumption of white noise input; (b) evaluation of the spectral moments and of the peak
factor by applying the well-known relationship introduced by Vanmarcke;22 in particular
a fractile p"0)99 and a duration time ¹"20 s have been considered; (c) estimation of the
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maximum value by means of the relationship given in the above cited Vanmarcke's work.22 In
this way the evaluation of the reference maximum value is not a!ected by the approximation
characterizing all the modal combination rules, including those presented here, since the peak
coe$cients are equal.

The displacement maximum value of a SDOF oscillator excited by a white noise and
characterized by a radian frequency u and a damping ratio m, evaluated by the previous steps
(a)}(c), is here considered as response spectrum value D(m, u). Alternatively, these quantities could
be obtained by Monte Carlo simulations. It is clear that, when the procedures considered are
applied in practice, the value of D (m, u) is that "xed by the response spectrum used for
representing the earthquake. Hence the steps (a)}(c) before cited are necessary only for evaluating
the reference value and the response spectrum values D(m, u), in order to test the approximate
procedures here proposed, but they are not necessary for using the modal combination rules.

It is important to note that the modal maximum responses obviously depend on the values of
the modal radian frequency and damping ratio; and that these values are di!erent depending
on the kind of modal combination used. In particular, if the Shina}Igusa combination rule is
used, these values are respectively c

j
and b

j
(given into equations (14)). On the other hand, if

the modal combination rule introduced in Section 3 is used, these values are u
j
and m

j
; at last, in

the alternative approach presented in Section 4, the value of the radian frequencies are u
j
, while

the damping ratio is the "xed value considered in the response spectrum; here in particular it was
chosen m"0)05.

5.1. Example 1

The simplest system having non-classical damping is the 2-DOF system represented in
Figure 1. This system was extensively studied in the past. In particular, Crandall and Mark21

used the frequency domain approach to "nd the stochastic characteristics of the response of this
system subjected to a white noise excitation, while Igusa et al.7 used the modal decomposition
method for the same objective. The study of this system is very useful because it is the model of
two representative cases of non-classically damped structural 2-DOF systems: the soil}structure
system and the equipment}structure system. In the "rst case the damping ratios of the soil
(substructure 1) and of the structure (substructure 2) are quite di!erent; in the second case the
mass ratio m

2
/m

1
is very small, the frequency ratio is close to 1 and the di!erence of the damping

ratios is such that

(m
1
!m

2
)2'm

2
/m

1
(57)

Furthermore, the choice of this example allows one to "nd the dependence of the results on the
values of the coupling factor a (de"ned in equation (6)) or of similar quantities representative of
the level of the system non-classicity. Finally in this example, for some suitable values of the
system parameters, since the modal radian frequencies are very close, the SRSS modal combina-
tion rule does not give accurate results.

In order to illustrate the good accuracy of the proposed modal combination rule with respect
to the other ones presented in literature, for the above-considered system a parametric study has
been conducted, in the two cases of soil}structure and equipment}structure systems, for di!erent
values of damping ratio di!erences. The chosen values of system parameters are just those
considered in the work of Igusa et al.7, that is: for the case of soil}structure system: average
damping ratio m

!
"(m

1
!m

2
)/2"0)2, mass ratio m

2
/m

1
"0)3 and natural circular frequencies
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Figure 1. Example 1: two-DOF system considered

u
1
"u

2
"10)0 rad/s; while for the case of the equipment}structure system: m

!
"0)04,

m
2
/m

1
"0)001 and u

1
"u

2
"10 rad/s. In both systems the varying parameter is the di!erence

of damping ratios m
1
!m

2
. The excitation considered is a unitary white noise. The reference nodal

response considered is the relative displacement between the two masses s(t)"u
2
(t)!u

1
(t).

In Figures 2 and 3 the results in terms of the maximum value of s (t) versus the damping ratio
m
1
!m

2
(which is strictly related to the value of the coupling index a) have been reported. From

the analysis of these "gures the great accuracy of the proposed approach, related to the fact that
no complex eigenvalue problem has to be solved, the advantages in applying this procedure are
evident. Moreover the results of the presented procedure do not change substantially in the case
of "xed modal damping ratios and this has been proved for various values of damping ratio. This
is a very important result for the applicability of this modal combination rule in the design codes
of the non-classically damped structures.

5.2. Example 2

In this example another important class of non-classically damped systems represented by the
isolated buildings is treated. In particular the same "ve-storey shear-frame considered in
Example 3 of the 1996 Chopra work23 and in Chapter 20 of his book1 is taken into account. As
the modal natural circular frequencies are very di!erent from each other, the in#uence of the
modal cross combinations is very limited and the SRSS and the CQC modal combination rules
lead practically to the same results. The fundamental goal of this application is to investigate the
accuracy of the proposed procedures for this kind of structures, too. The results are reported in
Table I and are referred to two nodal reference peak responses: the displacement u

5
(t) of the last

storey (referred to the isolation system), and the relative displacement between the last and the
fourth storey u

5
(t)!u

4
(t). The input is considered to be a unit white noise process, again. From

these results the excellent accuracy of the procedures is evidenced. In particular, it is important to
evidence that the procedures proposed in Sections 3 and 4 lead to the same results, which
con"rms that, in the presented combination rule the value of the reference maximum nodal
response does not depend on the value of the modal spectrum dampings considered. A change in
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Figure 2. Maximum nodal relative displacement in the "rst case of Example 1 (m
!
"0)2, m

2
/m

1
"0)3,

u
1
"u

2
"10 rad/s)

the modal spectrum dampings implies a corresponding change in the cross-correlation coe$-
cients in such a way that the estimation of the maximum value of the interested response quantity
remains unchanged.

Hence, in this way, the response spectrum approach can be applied for isolated building too, by
using only target response spectra.

6. CONCLUSIONS

In this work a method for the evaluation of the cross-correlation coe$cients of MDOF
non-classically damped structural systems is proposed. The method is developed in the time
domain and requires neither the solution of the complex eigenproblem related to the dynamical
matrix of the structure nor the velocity or cosine spectra. Indeed an opportune classically damped
system is considered for the evaluation of the cross-correlation coe$cients; in this way all the
necessary quantities are real. Besides this computational advantage, the proposed approach
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Figure 3. Maximum nodal relative displacement in the second case of Example 1. (m
!
"0)04, m

2
/m

1
"0)001,

u
1
"u

2
"50 rad/s)

Table I. Example 2: maximum value of the nodal response quantity of interest: comparison
among the reference results and the approximated ones obtained by the proposed CQC

approaches, the Shina}Igusa approach and the SRSS approach

Reference pr.appr. (3) pr.appr. (4) S.I. appr. SRSS

u
5

0)1865 0)1861 0)1862 0)1824 0)1824
u
5
}u

4
0)0126 0)0126 0)0125 0)0123 0)0123

exhibits another important feature. In fact it is shown that, when the modal combination rule is
used for the estimation of the structural response maxima, the results do not change if, in the
above cited classical damped system, the value of the damping ratios is "xed. Hence the proposed
approach presents the advantage that any target response spectrum can be considered in the
design of the non-classically damped structures, without the use of any approximated relationship
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transforming the spectrum in order to take into account the di!erent values of the damping
ratios. This fact implies a great accuracy in the results obtained by using the proposed procedure,
which is evident by the results reported in the application.
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APPENDIX

In this appendix the operation between two matrix quantities called block Kronecker product and
introduced in Section 3 is explained.

It is well known that, given two matrices A and B, or order (m]n) and (p]q), respectively, the
Kronecker product A ?B is the matrix C, or order (mp]nq), obtained by multiplying each
element of A for all the matrix B in such a way that:24

C"A
a
11

B a
12

B 2 a
1n

B

a
21

B a
22

B 2 a
2n

B

F F } F

a
m1

B a
m2

B 2 a
mn

B B (58)

Now, if A and B are supermatrices built by submatrices blocks by

A"A
A

11
A

21

A
12

A
22
B; B"A

B
11

B
21

B
12

B
22
B (59)

then, beyond the classical Kronecker product as introduced into equation (58), it is sometimes
useful to introduce the block Kronecker product which is de"ned as follows:

A xB"A
A

11
?B

11
A

11
?B

12
A

12
?B

11
A

12
?B

12
A

11
?B

21
A

11
?B

22
A

12
?B

21
A
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?B

22
A

21
?B

11
A
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?B

12
A

22
?B

11
A

22
?B

12
A

21
?B

21
A

21
?B

22
A

22
?B

21
A

22
?B

22
B (60)

It is obvious that this de"nition, here introduced for two (2]2) block matrices, can be extended to
any order block matrices.
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