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Abstract-This paper presents a general formulation for frame analysis based on ‘lumped dissipation 
models’ and continuum damage mechanics. A particular model for RC frames based on this framework 
is proposed and the numerical implementation of simplified damage models in commercial finite element 
programs is described. 

1. INTRODUCTION 

Since the pioneering paper of Kachanov [l], contin- 
uum damage mechanics has become one of the most 
active fields of research in solid mechanics. The main 
idea is the introduction of a new internal variable, the 
damage, that measures the density of microcracks 
and microvoids and their influence on the behavior of 
the material. This basic idea is so simple and so 
general that it has been used for the modeling, until 
local fracture, of most construction materials (see, for 
instance, [2] and its references). 

However continuum mechanics is not the most 
suitable framework for the analysis of many civil 
engineering structures. These are often modeled as 
trusses or fames because continuum models can be 
used only for relatively simple structures. 

Plasticity theories have been successfully adapted 
to frame analysis through the notion of ‘lumped 
plasticity models’, in which it is assumed that plastic 
effects can be concentrated in special locations called 
‘plastic hinges’ (see [3-51 and its references). 

As a result of studies carried out in the University 
of the Andes, Venezuela, in the area of nonlinear 
frame analysis [&lo], a formulation that generalizes 
the lumped plasticity models to include damage 
effects is proposed. This formulation can be con- 
sidered as simplified damage mechanics or fracture 
mechanics for frames; that is a theory for frame 
analysis that incorporates some notions and methods 
of continuum damage mechanics and fracture mech- 
anics. A numerical formulation for the resolution of 
damageable frames is also proposed. The main ad- 
vantage of this formulation is that it allows the 
implementation of simplified damage models in stan- 
dard finite element programs. A mathematical analy- 
sis of the problem is not considered in this paper; 
therefore, uniqueness, stability and localization in 
simplified damage models are not studied. However, 
we are aware that these are fundamental problems 
arising in strain-softening and damage-softening 

models. For the sake of simplicity we consider only 
planar frames in quasi-static conditions. Although 
this formulation can easily be generalized, experimen- 
tal identification of the model in the three-dimen- 
sional case could be difficult. 

This paper is organized as follows: in Sections 2 
and 3 the notation that is used in the paper is 
presented. In Section 4 a general framework for 
plasticity, coupled to damage for planar frames, is 
introduced and a particular model for RC frames is 
identified. In Section 5 the numerical analysis of these 
simplified models is described and some numerical 
examples are presented in Section 6. 

2. KINEMATICS OF PLANAR FRAMES 

2.1. Notation 

Let us consider a planar frame of ‘m’ members 
connected by ‘n’ nodes. The latter are grouped into 
two sets: N, and N,; N, contains the nodes subjected 
to external loads and N, includes the ‘supports’ of the 
structure, i.e. the nodes where displacements are 
imposed. We study the movement of the structure 
during a time interval [0, T]. The state of the structure 
at time f equal to zero is denoted ‘initial or unde- 
formed configuration’. For t greater than zero, any 
configuration of the structure is called ‘deformed’. 

We introduce a couple of orthogonal coordinate 
axes: X and Y, to define the position of each node at 
any configuration. This coordinate system remains 
stationary during the movement of the structure. 

We define now the following variables ((0) indi- 
cates a column matrix and {e}’ is its transposed form): 

(a) Generalized displacements of a node ‘i’ are 
denoted by {V}: = (u, , u2, u,), where u, , and u2 are, 
respectively, the displacements in the X and Y direc- 
tions; uj indicates the rotation of the node with 
respect to the position of the node in the initial 
configuration (Fig. 1). 
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Fig. 1. Generalized displacements of a node ‘i’. 

(b) Generalized displacements of a member ‘b’ 
between nodes 7’ and ‘j’ are denoted by: 
{q}’ = ({U}:, {U}:). Alternatively, we will use the 
notation {q}b to indicate the displacements of the 
same member ‘b’, but zeros will be added at the 
positions that correspond to the degrees of freedom 
of the other nodes of the structure, i.e. 

i j 

t----L’ 

Fig. 2. Generalized deformations of 
nodes ‘i’ and ‘j’. 

a member between 

3. GENERALIZED STRESSES AND INTERNAL FORCES 

3.1. Notation 

(a) Generalized internal forces on a member ‘b’ are 
denoted by {Q}’ = (Q,, Q2, . . . , Q6) (Fig. 3) or the 
matrix {Q>, built in the same way as (q}b. 

(b) We introduce the ‘generalized stresses’ of a 
member {M}’ = (M,, M,, N), that is conjugated with 

(c) Generalized displacements of the structure are 
denoted by 

{~}‘=({~}I,{~};,...,{~}~). (2) 

(d) Generalized deformations of a member 
‘b’ between nodes ‘i’ and ‘j’, denoted by 
{@}’ = (Qi, @,, 6) where Qi, and Qi indicate, respect- 
ively, rotations of the member at the ends ‘i’ and ‘j’ 
with respect to the cord ‘i-j’ (Fig. 2) and 6 is the 
elongation of the cord with respect to its length in the 
initial configuration. 

2.2. Compatibility equations 

Deformation and member displacement rates are 
related by the following expression: 

{d} = W)1{4 )T (3) 

where displacement transformation matrix [B(t)] is a 
function of the deformed configuration (Appendix 
A). Compatibility equations are obtained by inte- 
gration of (1) from the initial configuration to the 
deformed configuration at time t: 

{@) = 
s 

’ [%)1{4} dr. (44 
0 

This integration can be performed explicitly (Appen- 
dix B). 

If displacements are small, the displacement trans- 
formation matrix remains constant, i.e. [B(t)] 2 [BO] 
where the latter is the displacement matrix in the 
undeformed configuration. In such a case, eqn (4a) 
becomes 

{@I = POl{qJ. (4b) 

respect to generalized deformations {@I; M, and 
Mare the moments on the ends of the member and 
N represents the axial force (Fig. 3). 

(c) We assume that the structure is subjected to 
concentrated forces and moments on the nodes. 
These external actions are grouped into a matrix {P}: 

This matrix contains external forces as well as reac- 
tions on supports. 

3.2. Equilibrium equations 

(a) Static equilibrium of the members determine 
the relation between internal forces and generalized 
stresses at deformed configurations: 

{Q> = VW)l’iW. 

If displacements are small, then we have, in any 
configuration, 

{Q> = P”l’lW. (6b) 

(b) Quasi-static equilibrium of the nodes is ex- 
pressed as 

{P) - $, {Ql, = 0. (7) 

Fig. 3. Internal forces and generalized stresses of a member. 
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4. CONSTITUTIVE EQUATIONS 

4.1. Lumped dissipation model 

Relations between generalized stresses and the 
history of deformations must be included in order to 
completely define the problem. If the member has an 
elastic behavior this relation is expressed as follows: 

where [S’(a)] and [F’(M)] denote, respectively, the 
local elastic stiffness and flexibility matrices. They are 
a function of the deformed configuration of the 
member (Appendix C). 

If deformations are small, then the stiffness and 
flexibility matrices remain constant. In such a case, 
we can write the elastic constitutive equation as 
follows: 

{MJ = [S”]{@} or {@} = [F’](M). (gb) 

Under severe overloads, the elastic model is obvi- 
ously inadequate because the member may undergo 
plasticity, damage (cracking of the concrete in RC 
frames, for instance), hardening and other energy- 
dissipation phenomena. A more general constitutive 
equation can be obtained using the ‘lumped dissipa- 
tion model’ of the member indicated in Fig. 4. The 
member is characterized as the assemblage of an 
elastic beam-column and two zero-length inelastic 
hinges at the end of the member. This representation 
is similar to the ‘lumped plasticity model’ used 
commonly to elaborate plasticity theories for 
frames [3-51. In this paper, it is called ‘lumped dissi- 
pation’ instead of ‘lumped plasticity’ since damage 
and other inelastic effects are being taken into ac- 
count. Energy dissipation is assumed to concentrate 
only in the hinges while beam-column behavior 
always remains elastic. Member deformations can 
now be expressed as 

{@} = [F’l{M} + {G”}. (9) 

The first term of the right-hand part of (9) corre- 
sponds to the beam-column deformations where the 
symbol [F’] is the flexibility matrix introduced in (8) 
the last term is called ‘hinge deformation’. 

We assume that hinge deformations result from 
plastic deformations, as defined in standard plastic 
theories for frames, and an additional term due to 
damage 

{@“} = {@‘“I + (@“). 

, inelastic hinges, 

(10) 

elastic beam-column 

Fig. 4. Lumped dissipation model of a member. 

An expression for damage deformations {P’}, based 
on the results of continuum damage mechanics, is 
proposed in Section 4.3. 

4.2. Elements of continuum damage mechanics 

Continuum damage mechanics (see [2] for a 
general presentation) is based on the introduction of 
a new internal variable, that characterizes a surface 
density of microcracks and microvoids: let A, 
be the area of microdefects, including stress concen- 
tration effects, of a representative volume element 
and A, its total nominal area. Then damage is defined 
as 

D =$f. (11) 

Damage can take values between zero (intact el- 
ement) and one (broken element). Obviously damage 
has an influence on the elastic behavior of the 
material; this is taken into account through the 
‘effective stress’ notion and the ‘strain equivalence’ 
hypothesis. Effective stress d is defined as the ratio 
between the load applied on the volume element and 
the ‘effective resistance area’ 2 = A - A,,. Therefore, 
the relation between effective stress and Cauchy stress 
is given by 

(12) 

The hypothesis of strain equivalence consists of 
assuming that if we substitute Cauchy stress by 
effective stress, the behavior of a damaged material is 
the same as an intact material, i.e. 

0 0 

Ee=g=m’ 

where 6’ is the elastic strain and E the elastic stiffness 
of the intact material. 

Constitutive equations in damage mechanics are 
obtained by adding damage evolution laws to eqn 
(13). These laws are identified from experimental 
results and are material dependent [2]. 

4.3. FIexibility matrix of a damaged member 

Let us first consider the particular case of a truss 
member in the small displacement case. Then only 
axial generalized stress and deformation has to be 
taken into account. In such a case, on one hand, it 
follows from (13) (assuming that the state of damage 
is constant and that there is no localization in the 
member) that 

N 
’ = (1 -J))S$+“’ where Si, = EA/L. (14) 
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On the other hand, in lumped dissipation models the 
elongation 6 of the member is given by (see ex- 
pressions (9) and (10)) 

6 =$+6’+li’. 
33 

From (14) and (15) we obtain 

D 
*‘= (1 - D)s;3N’ 

(15) 

(16) 

This equation means that in order to have a 
lumped dissipation model with the same behavior of 
a truss member in continuum damage mechanics, it 
is necessary to define the damage axial deformation 
of the hinges by (16). For D equal to zero (no 
damage), we have axial hinges with zero flexibility of 
infinity stiffness (a rigid-plastic member). When D 

takes the value one, we obtain a member with infinite 
axial flexibility or zero stiffness (hinges and elastic 
beam are unconnected). 

where 

F’d(M, D)l= F”(WI + [C(D)l. (18) 

The term [Fd(M, D)] represents the flexibility 
matrix of a damaged member. Parameters d, and 
4 respectively measure flexion damage of hinges 
‘i’ and ‘j’. Parameter d, is the measure of ‘axial 
damage’ of the member. In the particular case of a 
truss where M, and M, take the value zero, we obtain 
the standard damage mechanics state law (14) with 
d, = D. 

If a flexion damage parameter takes the value zero 
(no damage) we have a plastic hinge like that of a 
standard lumped plasticity models. If it takes the 
value one (totally damaged) the hinge will be denoted 
‘totally damaged hinge’ and has the same behavior as 
an internal hinge in an elastic frame. 

As an example, the stiffness matrix of a member of 
inertia ‘I’ area ‘A ’ and length ‘L’ in the small 
displacements case is shown: 

I 
(1 -d,)(4-(I,)4EI,L 4(1 -d,)(l -d’)2E1,L 

4 - did, 4-d,d, 

[Sd(D II = (1 -d,k-4)4EI,L 
4-d,d, 

sym. 

(19) 

A similar analysis cannot be made in the presence 
of flexural or large displacements effects, even with 
very simple damage evolutions laws. Therefore we 
postulate the existence of a set of damage parameters 
{D f’ = (d,, d,, d,,) which can take values in the inter- 
val [0, 11, so that the behavior of the hinges is given 
by: 

where 

(17) 

4 
(1 -di)S:, ’ 

This relation was proposed in [6]. 
Equations (9) and (10) and (17) define the general- 

ized stress-deformation relation for a damageable 
elasto-plastic member. From these relations it 
follows 

{@ - @“} = [Fd(M, D)l{Aq, 

It can be seen that for {D} equal to zero, we obtain 
the standard stiffness matrix of an elastic member. If 
d, is equal to one and the other damage parameters 
take the value zero then [Sd(D)] becomes the stiffness 
matrix of an elastic member with an internal hinge at 
the left end. When both flexural damage parameters 
are equal to zero, we have the stiffness matrix of an 
elastic truss bar. 

4.4. Thermodynamicforces conjugated to damage and 

other internal variables 

Complementary potential energy of a damaged 
member U* is given by 

U*(M, D) = ;{M}‘[C(D)]{M} + W*, (20) 

where the first term is the contribution of the hinges 
to the complementary potential energy and W* rep- 
resents the complementary potential energy of the 
elastic beam-column. We assume that free enthalpy 
of a member can be expressed as the sum of the 
complementary potential energy plus an additional 
plastic potential that depends on set internal vari- 
ables: 

{lx}’ = (a,, r*, .): 

2 = li*(D, M) + U”(E). (21) 
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Parameters CC, may correspond to kinematic or 
isotropic plastic hardening variables. State law (17) 
can now be obtained as 

{@‘)={@ --a”)= & 1 Ii . (22) 

Thermodynamic forces conjugated to damage can be 
defined in a similar way: 

{G} = - 2 1 I (23) 

These forces are the equivalent of the energy release 
rate introduced in fracture and continuum damage 
mechanics. They have the following explicit ex- 
pression: 

G.= -ax=-!- Ml 
[ 1 = 

ad, 2S;, (1 - d,) 

(24) 

Thermodynamic forces conjugated to plastic harden- 
ing parameters (CZ} are given by 

{PI = - 2 {I (25) 

Energy dissipation due to damage and plasticity is 
now given by 

5 = {d}‘(G) + (@} {M} + (oi} {/S} 2 0. (26) 

Energy dissipation must be positive because of the 
laws of thermodynamics. If we assume that energy 
dissipation mechanisms are independent (possibility 
of damage without plasticity and vice versa) then 
each of them must be positive, i.e. 

@‘M, + &N + hardening terms (hinge i) > 0 

dTMj + &‘N + hardening terms (hinge j) 3 0 

c?, G, + an G, + hardening terms (hinge i) 2 0 

4G, + d,G, + hardening terms (hinge j) 2 0. (27) 

These inequalities can be used during numerical 
calculations to identify elastic unloading. 

4.5. Internal variable evolution laws 

Internal variable evolution laws are now intro- 
duced so that standard lumped plasticity models are 
obtained if damage remains constant ({d} = 0). 

The following general expressions were proposed 
in [IO]: 

(a) Plastic deformation evolution laws: 

(28) 

where f; < 0 and J; < 0 are respectively the yield or 
plastic functions of hinges ‘i’ and ‘j’. These functions 
depend on the generalized stresses (M} and may 
depend on the internal variables and plastic multipli- 
caters nf and A$‘. They must become the standard 
yield functions of plastic models when damage par- 
ameters remain constant. Plastic multipliers are cal- 
culated in the usual manner: 

AP 
{ 

=0 if f < 0 or f< 0 (no plasticity) 
#O if f = 0 and f= 0 (plastic increment). 

(29) 

Plastic deformation will be called ‘active’ in a hinge 
if the corresponding plastic multiplier is strictly posi- 
tive, otherwise it will be called ‘passive’. 

(b) Damage evolution laws: 

a a 
d =&!$+Jd~ 

” ’ ac, J ac"' 
(30) 

where g, < 0 and g, ,< 0 are called ‘damage functions’ 
and have the same role as the plastic functions, i.e. 
they indicate if a damage process has taken place in 
a member. Damage functions depend on thermodyn- 
amic forces associated to damage. They may depend 
on the internal variables and ‘damage multipliers’ Id. 
The latter are calculated as the plastic multipliers: 

id 
{ 

=0 ifg<O or g<O(nodamage) 
>O if g = 0 and g = 0 (damage increment). 

(31) 

As in the previous case, damage is ‘active’ in a hinge 
if the corresponding damage multiplier is strictly 
positive, otherwise it is ‘passive’. 

If other internal variables {CC} are present in the 
model, then their evolution laws can also be obtained 
from the plastic or damage functions or independent 
yield functions by the normality rule. 

4.6. Evolution law identiJication 

Plastic and damage functions and, in some cases, 
Up are the only terms that must be determined 
in order to completely define the model. The 
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Fig. 5. Test for yield function identification: specimen and 
loading. 

material of the member has not yet been taken 
into account. These functions are specific for each 
kind of frame (RC, steel and so on). Plastic and 
damage functions can be obtained from experimental 
results, as in lumped plasticity models and phe- 
nomenological models of continuum mechanics. This 
identification can be performed with civil engineering 
standard tests on beam-column joints. As an 
example, a procedure for evolution law identification 
that was applied to the particular case of RC mem- 
bers under reversible (but not cyclic loading) is 

*presented. 
Figure 5 shows a scheme of a specimen that 

represents a beam-column joint. The loading of the 
test is indicated in the same figure. The results of 
one of the tests are summarized in the curve 
force-displacement of Fig. 6. The characteristics of 
this specimen are L = 0.705 m, A = 15 x 20 cm*, Re- 
inforcement 4$9.525 mm(3/8’), .f;. E 25 N/mm’, 
A, = 420 N/mm’. 

The lumped dissipation model of the test is shown 
in Fig. 7. The specimen of Fig. 5 is represented by 
two members but due to the symmetry of the struc- 
ture only one of the members is shown in Fig. 7. 
Small displacements and deformations are assumed. 
Asymmetric bifurcation with respect to the funda- 
mental solution is possible, however we assume that 
this can appear only when the specimen exhibits 
softening behavior. Therefore only the values up to 
the peak of the displacement-force curve are used 
for model identification. Only one inelastic hinge 
appears in the member of Fig. 7 because we assume 
that d, and @y are equal to zero (The moment is 
equal to zero in the left end.) We assume that d,,, 6 
and #’ are equal to zero too because there is no axial 

50 , 
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Fig. 6. Displacement vs force in the identification test. 
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Fig. 7. Lumped dissipation model of the test. 

force. Then, taking into account (4b), (18) and (19), 
we have 

(f - 0 = Z(d)(f - fP), (32) 

where t indicates the deflection of the mid-point of 
the specimen, P is the force applied on the specimen, 
d=d, and tP= L@;. 

The series of loading and unloading allows for the 
experimental determination of the elastic stiffness Z 
and the plastic deflection t” at different values of the 
forces P. These terms have, in the lumped dissipation 
model of the test, the following expressions: 

f”=Lcfy. (33) 

These relations and the experimental values of Z and 
tP allow the measurement of the damage parameter 
‘d’ and the plastic deformation ‘@P’ at the time of 
each unloading (assuming that no further damage 
and plasticity effects happen until reloading): 

The measures of M and G (the conjugated variables 
of @P and d) are given by 

(35) 

The curves M as a function of @* and d as a function 
of G are shown in Figs 8 and 9. Plastic and damage 

20 
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Plastic deformation (%) 

Fig. 8. Generalized stresses as a function 
deformations. 
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Fig. 9. Damage as a function of its thermodynamic 
moment. 

functions were identified from these curves and other 
similar tests [7]. We propose the following ex- 
pressions: 

f= lM -(+bp~ -4(S)M, 

where c, MY, G,, and q are constants that characterize 
the member. A comparison between the tests and the 
models are indicated in Figs 6, 8 and 9. Only three 
unloadings are indicated in the curve corresponding 
to the model in Fig. 9 but similar results are obtained 
for every unloading. 

It can be noticed that these constitutive equations 
become the perfect elasto-plastic model if damage 
remains constant and c takes the value zero. If c is 
positive, but there is no damage increments, we 
obtain a bilinear elasto-plastic model with kinematic 
hardening. In the general case, the ‘size’ of the elastic 
zone is given by the competition between the harden- 
ing produced by plasticity and the softening due to 
damage. 

The damage function exhibits an initial ‘non-dam- 
age’ zone of size G,, and a ‘hardening’ term given by 
the last parenthesis of the damage function. If q takes 
the value zero the damage evolution would be the 
equivalent of the Griffith criterion, introduced in 
fracture mechanics, for frames. 

Parameters c, M,., G,, and q have non-well-defined 
mechanical interpretations. Rather than determine 
these constants directly, it is preferable to calculate 
them by the numerical resolution of the following 
non-linear system of equations: 

M = M,., implies d = 0 

M = M,, implies @p = 0 

M = Mu implies $ = 0, 

M = M, implies w = @I:, (37) 

where M,., is the cracking moment, M,, is the yield 
or plastic moment, M,, the ultimate moment and 
@: is the plastic deformation at the ultimate 
moment. Numerical resolution of (37) can be 
performed by standard methods. These parameters 
can be obtained from classic theory of reinforced 
concrete (see, for instance [I 11) or by more sophisti- 
cated methods that will not be discussed in this paper. 
We assume that these coefficients can be estimated 
when the characteristics of the member are known 
(length, area of the cross-section, amount and distri- 
bution of the reinforcement, properties of the 
concrete and so on). Obviously the performance of 
the model depends on the quality of the methods 
used for their calculation. In the numerical simu- 
lations indicated in Figs 6, 8 and 9 these values were 
taken from the experimental results, which explains 
the excellent agreement between model and exper- 
iment. These values were L = 0.705 m, .S, = 3286 kN- 
m, Mu = 16.29 kN-m, M,, = 11.50 kN-m, M, = 0, 
ePau = 0.174822. 

More sophisticated models for cyclic loading 
based on the same framework are under development 

WI. 

5. NUMERICAL ANALYSIS OF SIMPLIFIED 
DAMAGE MODELS 

5.1. Formulation of the problem 

Given: 

(a) The geometry of the structure defined by nodes 
coordinate and the connection table that defines the 
members. 

(b) Properties of the members. 
(c) Loading history of the nodes belonging to the 

set N, during the time interval [0, r]. 
(d) Displacement history of the nodes in the set N, 

during the same interval. 

Calculate: 

(a) Displacement history {X(t)} of the nodes in 

N,. 
(b) Reactions on the nodes in N,. 
(c) Deformations {Q(t)}, stresses {M(t)}, internal 

forces {Q(t)}, plastic deformations {G”(t)}, damage 
{D(t)}, thermodynamic forces {G(t)} and, if necess- 
ary, the remaining internal variables and their associ- 
ated forces {a(t)>, {B(t)} for each member of the 
structure. 

Such that they verify: 

(a) Compatibility eqns (4). 
(b) Equilibrium eqns (6) and (7). 
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(c) State laws (18), (24) and (25). 
(d) Internal variables evolution laws (28)+3 1). 

5.2. Time discretization 

Time interval [0, T] is discretized into 
(0, t,, t2, t, , T). The unknowns of the problem 
are not calculated during the entire history but only 
at the times t, by a standard step-by-step method. 
Time derivatives appear only in the internal variables 
evolution laws. These relations must then be dis- 
cretized. It can be done by the following ‘O-method’: 

Let {A}‘= (Ai, A,, A,) be the values at the 
end of a step of any internal variable, i.e. {A} 
may represent plastic deformations or damage. Let 
{I’)’ = (Yi, q, Y,) be the conjugated force to {A 1, 
i.e. generalized stress or thermodynamic forces as- 
sociated to damage. Values at the beginning of the 
step are denoted by {A,} and { Y,,). Increments of 
these variables during the step are {AA 1 and {A Y), 
where 

W)=(A)-_I&}; {AYJ={Yf-{Yo). (38) 

Evolution of {A ) is determined by yield functions 
‘h,’ for hinge ‘i’ and ‘h,’ for hinge ‘j’, i.e. they can 
represent plastic or damage functions. Inelastic mul- 
tipliers associated with functions ‘h’ are denoted, 
respectively, as 1, and A,. Then increments of the 
internal variable (A } can be approximated as follows: 

where {A,] = @{A] + (1 - e){A,j; 0 < 13 < 1; and 
{Y,} is defined in the same way. 

This implicit (when 0 # 0) integration scheme is 
similar to others used in continuum damage mech- 
anics. For a stability analysis of this algorithm see 

1131. 
After discretization, the equation that allows the 

determination of the increment of the inelastic multi- 
plier becomes 

h, = 0 if the internal variable {A} is active 
in hinge ‘i’ 

Al, = 0 otherwise. (40) 

Energy dissipation inequality (27) due to the evol- 
ution of (A 1 can be written as 

Y,uAA, + Y&A, > 0 Y,,,AA, + Y,,,AA, 2 0. (41) 

Equations (39) and (40) (specified for each internal 
variable of the constitutive model) must substitute the 
internal variable evolution laws (28)-(31), in order to 
solve numerically the problem formulated in Section 
5.1. Inequalities (41) can be used to identify elastic 
unloading. 

5.3. Formulation of the global and local problems 

Compatibiltiy eqns (4) member equilibrium eqns 

(6) and constitutive eqns (18), (24) (39) and (40) 
constitute a nonlinear matrix system of 10 equations 

with 11 unknowns ((q}, {@I, {@“}, {D}, {M}, {GJ, 
(A:, I?$), (A:‘, j-f); {x} and {fi} if needed; and {Q}) at 
the end of the step and for each member of the 
structure. 

This system of equations implicitly defines a re- 
lation between the member displacements {q} and 
internal forces (Q} for each member of the structure 
(i.e. given a matrix {q}, the values of {Q> can be 
computed by the numerical resolution of the system 
of equations). This relation is denoted, formally, as 

{Q) = IQ(q)) or {Qh= {QWL. (42) 

The last relation and the node equilibrium eqn (7) 
give: 

{L(X)} = iPI - f iQV’,h = 0. (43) 
h=, 

Resolution of (43) is called the ‘global problem’. 
The global problem, which has only one unknown, 

the displacements matrix {X}, can be solved by the 
Newton method. In this case, this consists of the 
solution at each iteration ‘s’ of the following linear 
problem: 

where 

Therefore, for each global iteration, it is necessary to 
solve ‘m’ problems where, for a given value of {q}, 

the matrix {Q(q)} and the contribution of each 
member to the global tangent matrix [aL/aX] must be 
calculated. These are called ‘local problems’. 

The formulation presented in this section has the 
advantage that it allows the introduction of simplified 
damage models for frames in commercial finite el- 
ement programs. Indeed, nonlinear finite element 
programs basically solve equations such as (43) by 
Newton’s or other similar methods. The local prob- 
lem corresponds to the calculation of an element’s 
contribution to the global stiffness and forces 
matrices. Thus, the simplified damage model of a 
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member can be included in the library of finite 
elements of standard structural analysis programs. 

Simultaneous resolution of the global problem and 
the ‘m’ local problems is of course possible and 
perhaps more effective from the computational point 
of view. However, implementation into commercial 
software would be more difficult and access to the 
source files could be necessary. 

5.4. Numerical resolution of the local problem 

As indicated in the previous section, the local 
problem consists in the numerical calculation of the 
internal forces {Q} and the consistent tangent matrix 
[aQ/aq] as a function of the member displacements 
{q}. This can be done using the following algorithm: 

(a) Calculation of generalized deformations as a 
function of the member deformations at the end of 
the step by the compatibility eqns (4). 

(b) Calculation of generalized stress, internal vari- 
ables and its conjugated forces as a function of the 
generalized deformations. 

(c) Calculation of local consistent tangent matrix 
in ‘local coordinates’ [aM/&B] as a function of the 
variables computed in the steps ‘a’ and ‘b’. 

(d) Calculation of the local consistent tangent 
matrix in ‘global coordinates’ [aQ/aq] as a function 
of the term computed in step ‘c’. 

(e) Calculation of the internal forces {Q ) as a 
function of the generalized stresses and member 
displacements by the member equilibrium eqns (6). 

Steps ‘a’ and ‘e’ do not require further expla- 
nations since they are direct applications of the 
compatibility and equilibrium equations. Steps ‘b’, 
‘c’ and ‘d’ are described in detail in the following 
sections. 

5.5. Calculation of the generalized stresses 

This is done by the numerical resolution of a 
nonlinear system of equations constituted by the 
stress-deformation relation (1 S), discretized internal 
variable evolution laws (39) and (40) with three 
unknowns: generalized stresses, internal variables 
and inelastic multipliers. Conjugated forces to in- 
ternal variables can be expressed as a function of 
these variables by the state laws (24) and (25), 
therefore it is not necessary to include them in the 
local problem. The system of equations can be writ- 
ten as follows: 

{R(M, @, A,)} = 0 

{A )k - {‘%}k - {T(& M, @, “I,)}, = 0 

k = 1,2,3, . . . 

{ JJQ, M, @, Ak)}k = 0, (45) 

where {A }, , {A }2, represents the internal vari- 
ables of the model, i.e. {P’}, {D}, . . and 

{R(M, @‘, A,)} = I@> - {@“> - [Fd(M, DNM}; 

’ ay, (A) = (,4,);(Y) = (Y#) 

where 

I/, = hi(M, @, Ak) 

’ {Ali 

if multiplier 1: is active 
otherwise 

This problem can be solved by the Newton method, 
however we do not know which internal variables are 
active and thus which expression for { V}k should be 
used. This additional difficulty arises too in plastic or 
viscoplastic multicriteria models of solids. The algor- 
ithms developed in these cases (see, for instance, [ 141) 
are also applicable in the present context. We briefly 
describe the scheme used in the examples presented in 
Section 6. The algorithm can be divided into three 
substeps: 

(a) ‘Elastic predictor’. This consists of the resol- 
ution of the following subproblem: 
find {M, } such that: 

(NM,, @, 4lk)) = 0. (46) 

Resolution of (46) corresponds to the computation of 
the generalized stresses at the end of step, assuming 
that there is no increment of the internal variables. 

A first estimation of the set of active inelastic 
multipliers can now be made: 
Multipliers 1: is assumed active if 

(47) 

(b) ‘Inelastic corrector’. This consists of the resol- 
ution of (45) with assumptions (47) by, for instance, 
the Newton method. 

(c) ‘Verificator-projector’. In this substep, we ver- 
ify that: 

(i) Each internal variable whose inelastic multipli- 
cator is assumed active matches inequality (41) after 
inelastic correction. If one of them does not, then the 
inelastic multiplier is changed to ‘passive’ and a new 
inelastic correction is necessary. 

(ii) Every yield function associated with inelastic 
multipliers assumed passive is negative. If one of 



1122 A. Cipollina et al. 

them is not, then the inelastic multiplier is changed to 6. NUMERICAL EXAMPLES 

‘active’ and a new inelastic correction is necessary. 
If no correction is needed, generalized stresses and 

A program with the damage model described in 

internal variables computation is finished. These ‘ver- 
Section 4 was developed using the algorithms de- 

ification-projections’ can be done at the end of the 
scribed in Section 5 (see [8] for further details). An 

‘inelastic correction’ or after each iteration during the 
interface to connect this program with the finite 

inelastic correction [14]. 
element program ABAQUS [I 51 was written. Two 
examples processed with this program are shown in 
Sections 6.1 and 62. 

5.6. Calculation of the consistent tangent matrix in 6.1. Collapse of a two member frame: test and numeri- 
local coordinates cal simulation 

Taking derivatives of eqns (45) with respect gener- The specimen represented in Fig. 10 (1 = 0.455 m, 

alized deformations {@}, we obtain: area = 15 x 15 cm*, Reinforcement 4 4 9.525 mm 

[~][~]+[E]~]= -[is] 
~]-[~]~~]-[i‘J[2]-[~][~]=[~] 

[%$g+[i,$2]+[:][:]= -[ii]. (48) 

In this linear system of matrix equations, derivatives 
of generalized stresses, internal variables and inelastic 
multiplicators with respect to generalized defor- 
mations are the only unknowns of the problem. 
Resolution of (48) allows the computation of the 
local consistent tangent matrix in local coordinates. 

5.1. Calculation of the consistent tangent matrix in 
global coordinates 

Derivatives of the internal forces {Q) with respect 
to member displacement {q} can be written, taking 
into account eqns (6) and (3) as 

In the particular case of small displacements the first 
term of the consistent tangent matrix is equal to zero, 
since the displacement transformation matrix is con- 
stant, otherwise it can be reduced to the expression 
given in Appendix D. 

(3/8”),f: z 25 N/mm2,f,, g 420 N/mm2) was subjected 
in the laboratory to the loading indicated in the same 
figure. Results of the test are indicated in Fig. 11. This 
test was modeled as a two-member structure and a 
numerical simulation with the program was per- 
formed. The parameters of the model were taken 
from the experimental results (4EI/L = 17,733 kN-m, 
M, = 31.33 kN-m, M,, = 27.17 kN-m, M,, = 8.49, 

aP,, = 21.03 x lo-‘). Numerical simulation of the test 
is also shown in Fig. 11. Loading is represented as a 
concentrated force on the upper node of the frame. 
Collapse of the structure is reached at the same 
experimental value (which is not surprising since the 
parameters of the model were taken from the exper- 
imental results) and appeared in the calculation as the 
last point were a solution was founded (there is no 
analytical solution for force controlled simulations 
and arc-length algorithms have not yet been im- 
plemented in the element). Displacement controlled 
simulations gave the same results up to the peak of 
the force-displacement curve. After the peak there 

Fig. 10. Test on a two member structure: specimen and loading 
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Displacement (cm) 

Tesr I 

___ 2 Numerical simulation 

Fig. 11. Comparison between test and numerical simulation 
in a two member structure. 

are three theoretical solutions for the first rate prob- 
lem. They are not shown in the figure and uniqueness 
and stability analysis of the problem is not considered 
in this paper. 

6.2. Numerical simulation of a two storey frame’s 
behavior 

The results of a test performed on the RC frame 
shown in Fig. 12 were reported in [16]. The testing 
first involved applying a total axial load of 700 kN to 

each column and maintaining this load in a force- 
controlled mode throughout the test. Lateral load 
was then applied, in a stroke-controlled mode, until 
the ultimate capacity of the frame was achieved. The 
test history in terms of applied lateral load vs deflec- 
tion of the top-storey is shown in Fig. 13. In the same 
paper the authors reported a numerical simulation 
of the test (without unloading) using a multi-layer 
model. Forty member segments were used in the 
discretization and very accurate results were obtained 
(see [16] for details of the model and the test). 

In this section we present the results of another 
simulation of the same test performed with the 
simplified damage model proposed in this paper. The 
structure was discretized in six members. No geo- 
metric nonlinearity was considered. The properties of 
the members were obtained by standard theory of 
reinforced concrete. Inertia and area of the cross-sec- 
tion were obtained by transformation of the steel area 
in an equivalent section of concrete. Axial loads on 
the columns were taken into account in the calcu- 
lation of the cracking, plastic and ultimate moment 
of the cross-section by standard methods. Ultimate 
plastic rotation was calculated using the empirical 
expression proposed by Baker, as reported in [l 11. 
The parameters obtained are: 

Beams: E = 26.33 kN/mm: I = 1.63 x lo9 mm4, 

A = 1.38 x 105mm2, 

M, = 0.28 x lo5 kN-mm, 

MP = 1.61 x lo5 kN-mm, 

700 kN 

I 

700 kN 

I 
-t3OOl-- 

Fig. 12. Details of a test frame after [16]. 

CAS 5416, 
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Fig. 13. Test history in terms of applied lateral load vs deflection at top-storey after [16] 

M, = 1.89 x 105kN-mm, 

@‘pU = 1.67 x lo-‘. 

Columns: E = 26.33 kN-mm, I = 1.63 x 10’ mm’, 

A = 1.38 x 10’ mm’, 

M,., = 0.69 x IO5 kN-mm, 

IW~ = 2.53 x IO’kN-mm, 

M, = 2.73 x lo5 kN-mm, 

@,,” = 0.6 x lo-?. 

The results of the numerical simulation are presented 
in Figs 14 and 15. Figure 14 indicates the force as a 
function of the two-storey displacement. Moment 
distribution at ultimate load is indicated in Fig. 15(b). 
The values of the damage parameters and inelastic 

hinges with plastic rotations at the same load are 
shown in Fig. 15(a). 

The results are reasonably accurate, taking into 
account the little effort made in the calculation of the 
model parameters. In [16] it is reported that the 
frame first experienced cracking at a load of 52.5 kN 
and that this happened in the first storey beam 
at north bottom face and the south top face. In the 
numerical simulation, the damage variables of the 
first-storey beam reached positive values for the first 
time at a load of 51.06 kN. The values of the damage 
in the other members of the frame were zero at the 
same time. In the test, flexural cracking at the base of 
the columns occurred at a load of 145 kN. In the 
simulation, damage threshold was reached at the 
bottom of the columns at a load of 100 kN. The first 
yielding in the test is reported to occur at a load of 
264 kN in the first-storey beam. Plastic deformations 
appeared in the simulation for the first time in the 
same element at load of 253 kN. Yielding at the base 
of columns occurred as the load approached 323 kN 

0 1 

Displacement (m 111 ) (*10”*2) 

Fig. 14. Numerical simulation of the test. Lateral load vs deflection at top-storey 
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7. SUMMARYANDCONCLUSIONS 

A general framework for the nonlinear analysis of 

frames based on the continuum damage mechanics 
theory and lumped dissipation models has been de- 
veloped. Within this framework, many kinds of ma- 
terials and loading can be taken into account. As an 
example, a particular model for RC frames under 
reversible loading was proposed and implemented 
into a commercial finite element program. 

0 Inelastic hinge without plasticity 
l Inelastic-plastic hinge 

This simplified models seems to be an effective tool 

for the numerical simulation of the collapse of 
frames. They could be a valuable alternative when 
other types of analysis, such as those based on 
multi-layer models, appear to be too expensive or 
impractical due to the size and complexity of the 
structure. 

The particular model for RC frames proposed in 
Section 4.6 exhibited a very high quality/price re- 
lation in the examples shown in Sections 4 and 6. The 
model seems very accurate if properties of the cross- 
section, such as inertia, plastic moment, ultimate 
moment and so on, can be calculated with good 
precision. 

Simplified damage models can be implemented in 
commercial finite element programs with little effort. 
The numerical instabilities due to localization, that 
are typical of the strain- and damage-softening 
models in continuum mechanics, have not appeared 
in the examples treated so far. 

1. 

___ = 250000 KN-mm 
2. 

Fig. 15. State of the frame at the ultimate load. (a) Damage 
and plastic hinges. (b) Moment distribution. 3. 

in the test. In the simulation this happened at 296 kN. 
The ultimate load observed during the test was 

4, 

332 kN, whereas in the simulation the ultimate load 
was 323 kN. The failure mechanism reported in [16] 5. 
is the same as that obtained in the simulation and is 
indicated in Fig. 15(a). 

It can be noticed that the theory of reinforced 
6. 

concrete gives conservative values of the parameters, 
therefore the model is in this case conservative. In the 
model, plastic deformations are assumed to occur 7. 
only after the yielding of the reinforcement (since 
A4P was calculated in this way). In the test, non- 
negligible permanent deformations occurred before 
this, probably because of inelastic strains in the 
concrete and cracking. The results of the numerical ‘. 
simuation can be improved by taking into account 
this and other effects (as confinement of the concrete, 
dead loads and so on) in the calculation of the 
parameters. 

These example gives an estimate of the results that 9 
an engineer could obtain by analyzing a large struc- 
ture at a very low cost. 
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APPENDIX A 

Displacement matrix transformation after [ 171: 

[Bl = 

where r0 and LO are the angle and length of the cord in the 
deformed configuration. 

APPENDlX C 

Flexibility matrix of a member of length L, area A and 
inertia I after [18] 

y9 0 
9y 0 
0 0 I/A 

bWf)l = ; 

where 

ifN<O 

otherwise 

APPENDIX D 

where s = sin(a), c = cos(a). a = cc(t) is the angle between 
the cord of the member and the axe X and L = L(t) is the 
length of the cord. 

APPENDIX B 

Relation between generalized displacements and 
mations after [17]: 

@,=41-(go-cc(t)); @,=qh-(u”-a(r)); 

6= L(t)- L”, 

defor- 

Term of the local consistent tangent matrix due to large 
displacements after [ 171: 

L 8B’ 
--M 
89 1 N =- 

2 

9 --SC 0 -sz SC 0 

--SC L.2 0 SC -2 0 

0 000 00 

_S2 SC 0 s2 --SC 0 

SC -cz 0 -SC 2 0 

0 000 00 


