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35.1 Introduction

The primary purpose of this chapter is to present dynamic methods for analyzing bridge structures
when subjected to earthquake loads. Basic concepts and assumptions used in typical dynamic
analysis are presented first. Various approaches to bridge dynamics are then discussed. A few
examples are presented to illustrate their practical applications.

35.1.1 Static vs. Dynamic Analysis

The main objectives of a structural analysis are to evaluate structural behavior under various loads
and to provide the information necessary for design, such as forces, moments, and deformations.
Structural analysis can be classified as static or dynamic: while statics deals with time-independent
loading, dynamics considers any load where the magnitude, direction, and position vary with time.
Typical dynamic loads for a bridge structure include vehicular motions and wave actions such as
winds, stream flow, and earthquakes.
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35.1.2 Characteristics of Earthquake Ground Motions

An earthquake is a natural ground movement caused by various phenomena including global
tectonic processes, volcanism, landslides, rock-bursts, and explosions. The global tectonic processes
are continually producing mountain ranges and ocean trenches at the Earth’s surface and causing
earthquakes. This section briefly discusses the earthquake input for seismic bridge analysis. Detailed
discussions of ground motions are presented in Chapter 33.

Ground motion is represented by the time history or seismograph in terms of acceleration,
velocity, and displacement for a specific location during an earthquake. Time history plots contain
complete information about the earthquake motions in the three orthogonal directions (two hor-
izontal and one vertical) at the strong-motion instrument location. Acceleration is usually recorded
by strong-motion accelerograph and the velocities and displacements are determined by numerical
integration. The accelerations recorded at locations that are approximately the same distance away
from the epicenter may differ significantly in duration, frequency content, and amplitude due to
different local soil conditions. Figure 35.1 shows several time histories of recent earthquakes.

From a structural engineering view, the most important characteristics of an earthquake are the
peak ground acceleration (PGA), duration, and frequency content. The PGA is the maximum
acceleration and represents the intensity of a ground motion. Although the ground velocity may
be a more significant measure of intensity than the acceleration, it is not often measured directly,
but determined using supplementary calculations [1]. The duration is the length of time between
the first and the last peak exceeding a specified strong motion level. The longer the duration of a
strong motion, the more energy is imparted to a structure. Since the elastic strain energy absorbed
by a structure is very limited, a longer strong earthquake has a greater possibility to enforce a
structure into the inelastic range. The frequency content can be represented by the number of zero
crossings per second in the accelerogram. It is well understood that when the frequency of a regular
disturbing force is the same as the natural vibration frequency of a structure (resonance), the
oscillation of structure can be greatly magnified and effects of damping become minimal. Although

FIGURE 35.1 Ground motions recorded during recent earthquakes.
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earthquake motions are never as regular as a sinusoidal waveform, there is usually a period that
dominates the response.

Since it is impossible to measure detailed ground motions for all structure sites, the rock motions
or ground motions are estimated at a fault and then propagated to the Earth surface using a computer
program considering the local soil conditions. Two guidelines [2, 3] recently developed by the
California Department of Transportation provide the methods to develop seismic ground motions
for bridges.

35.1.3 Dynamic Analysis Methods for Seismic Bridge Design

Depending on the seismic zone, geometry, and importance of the bridge, the following analysis
methods may be used for seismic bridge design:

• The single-mode method (single-mode spectral and uniform load analysis) [4,5] assumes
that seismic load can be considered as an equivalent static horizontal force applied to an
individual frame in either the longitudinal or transverse direction. The equivalent static force
is based on the natural period of a single degree of freedom (SDOF) and code-specified
response spectra. Engineers should recognize that the single-mode method (sometimes
referred to as equivalent static analysis) is best suited for structures with well-balanced spans
with equally distributed stiffness.

• Multimode spectral analysis assumes that member forces, moments, and displacements due
to seismic load can be estimated by combining the responses of individual modes using the
methods such as complete quadratic combination (CQC) method and the square root of the
sum of the squares (SRSS) method. The CQC method is adequate for most bridge systems
[6], and the SRSS method is best suited for combining responses of well-separated modes.

• The multiple support response spectrum (MSRS) method provides response spectra and the
peak displacements at individual support degrees of freedom by accurately accounting for
the spatial variability of ground motions including the effects of incoherence, wave passage,
and spatially varying site response. This method can be used for multiply supported long
structures [7].

• The time history method is a numerical step-by-step integration of equations of motion. It
is usually required for critical/important or geometrically complex bridges. Inelastic analysis
provides a more realistic measure of structural behavior when compared with an elastic
analysis.

Selection of the analysis method for a specific bridge structure should not be purely based on
performing structural analysis, but be based on the effective design decisions [8]. Detailed discus-
sions of the above methods are presented in the following sections.

35.2 Single-Degree-of-Freedom System

The familiar spring–mass system represents the simplest dynamic model and is shown in
Figure 35.2a. When the idealized, undamped structures are excited by either moving the support or
by displacing the mass in one direction, the mass oscillates about the equilibrium state forever
without coming to rest. But, real structures do come to rest after a period of time due to a
phenomenon called damping. To incorporate the effect of the damping, a massless viscous damper
is always included in the dynamic model, as shown in Figure 35.2b.

In a dynamic analysis, the number of displacements required to define the displaced positions
of all the masses relative to their original positions is called the number of degrees of freedom
(DOF). When a structural system can be idealized with a single mass concentrated at one location
and moved only in one direction, this dynamic system is called an SDOF system. Some structures,
© 2000 by CRC Press LLC



            
such as a water tank supported by a single-column, one-story frame structure and a two-span bridge
supported by a single column, could be idealized as SDOF models (Figure 35.3).

In the SDOF system shown in Figure 35.3c, the mass of the bridge superstructure is the mass of
the dynamic system. The stiffness of the dynamic system is the stiffness of the column against side
sway and the viscous damper of the system is the internal energy absorption of the bridge structure.

35.2.1 Equation of Motion

The response of a structure depends on its mass, stiffness, damping, and applied load or displace-
ment. The structure could be excited by applying an external force p(t) on its mass or by a ground

FIGURE 35.2 Idealized dynamic model. (a) Undamped SDOF system; (b) damped SDOF system.

FIGURE 35.3 Examples of SDOF structures. (a) Water tank supported by single column; (b) one-story frame
building; (c) two-span bridge supported by single column.
© 2000 by CRC Press LLC



                             
motion u(t) at its supports. In this chapter, since the seismic loading is induced by exciting the
support, we focus mainly on the equations of motion of an SDOF system subjected to ground
excitation.

The displacement of the ground motion , the total displacement of the single mass , and
the relative displacement between the mass and ground u (Figure 35.4) are related by

(35.1)

By applying Newton’s law and D’Alembert’s principle of dynamic equilibrium, it can be shown
that

(35.2)

where  is the inertial force of the single mass and is related to the acceleration of the mass by
;  is the damping force on the mass and related to the velocity across the viscous damper

by ;  is the elastic force exerted on the mass and related to the relative displacement
between the mass and the ground by , where k is the spring constant; c is the damping
ratio; and m is the mass of the dynamic system.

Substituting these expressions for , , and  into Eq. (35.2) gives

(35.3)

The equation of motion for an SDOF system subjected to a ground motion can then be obtained
by substituting the Eq. (35.1) into Eq. (35.3), and is given by

(35.4)

35.2.2 Characteristics of Free Vibration

To determine the characteristics of the oscillations such as the time to complete one cycle of
oscillation ( ) and number of oscillation cycles per second ( ), we first look at the free vibration
of a dynamic system. Free vibration is typically initiated by disturbing the structure from its

FIGURE 35.4 Earthquake–induced motion of an SDOF system.
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equilibrium state by an external force or displacement. Once the system is disturbed, the system
vibrates without any external input. Thus, the equation of motion for free vibration can be obtained
by setting  to zero in Eq. (35.4) and is given by

(35.5)

Dividing the Equation (35.5) by its mass m will result in

(35.6)

(35.7)

where  the natural circular frequency of vibration or the undamped frequency;
 the damping ratio;  the critical damping coefficient.

Figure 35.5a shows the response of a typical idealized, undamped SDOF system. The time required
for the SDOF system to complete one cycle of vibration is called the natural period of vibration
( ) of the system and is given by

FIGURE 35.5 Typical response of an SDOF system. (a) Undamped; (b) damped.
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(35.8)

Furthermore, the natural cyclic frequency of vibration  is given by

(35.9)

Figure 35.5b shows the response of a typical damped SDOF structure. The circular frequency of
the vibration or damped vibration frequency of the SDOF structure, , is given by

.
The damped period of vibration ( ) of the system is given by

(35.10)

When  or  the structure returns to its equilibrium position without oscillating and
is referred to as a critically damped structure. When  or , the structure is overdamped
and comes to rest without oscillating, but at a slower rate. When  or , the structure is
underdamped and oscillates about its equilibrium state with progressively decreasing amplitude.
Figure 35.6 shows the response of SDOF structures with different damping ratios.

For structures such as buildings, bridges, dams, and offshore structures, the damping ratio is less
than 0.15 and thus can be categorized as underdamped structures. The basic dynamic properties
estimated using damped or undamped assumptions are approximately the same. For example, when

, , and 
Damping dissipates the energy out of a structure in opening and closing of microcracks in

concrete, stressing of nonstructural elements, and friction at the connection of steel members. Thus,
the damping coefficient accounts for all energy-dissipating mechanisms of the structure and can
only be estimated by experimental methods. Two seemingly identical structures may have slightly
different material properties and may dissipate energy at different rates. Since damping does not

FIGURE 35.6 Response of an SDOF system for various damping ratios.
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play an important quantitative role except for resonant responses in structural responses, it is
common to use average damping ratios based on the types of construction materials. Relative
damping ratios for common types of structures, such as welded metal of 2 to 4%, bolted metal
structures of 4 to 7%, prestressed concrete structures of 2 to 5%, reinforced-concrete structures of
4 to 7% and wooden structures of 5 to 10%, are recommended by Chmielewski et al. [9].

35.2.3 Response to Earthquake Ground Motion
A typical excitation of an earth movement is shown in Figure 35.7. The basic equation of motion
of an SDOF system is expressed in Eq. (35.4). Since the excitation force  cannot be described
by simple mathematical expression, closed-form solutions for Eq. (35.4) are not available. Thus,
the entire ground excitation needs to be treated as a superposition of short-duration impulses to
evaluate the response of the structure to the ground excitation. An impulse is defined as the product
of the force times duration. For example, the impulse of the force at time  during the time interval

 equals  and is represented by the shaded area in Figure 35.7. The total response of
the structure for the earthquake motion can then be obtained by integrating all responses of the
increment impulses. This approach is sometimes referred to as “time history analysis.” Various
solution techniques are available in the technical literature on structural dynamics [1,10].

In seismic structural design, designers are interested in the maximum or extreme values of the
response of a structure as discussed in the following sections. Once the dynamic characteristics
( and ) of the structure are determined, the maximum displacement, moment, and shear on
the SDOF system can easily be estimated using basic principles of mechanics.

35.2.4 Response Spectra
The response spectrum is a relationship of the peak values of a response quantity (acceleration, velocity, or
displacement) with a structural dynamic characteristic (natural period or frequency). Its core concept in
earthquake engineering provides a much more convenient and meaningful measure of earthquake effects than
any other quantity. It represents the peak response of all possible SDOF systems to a particular ground motion.

Elastic Response Spectrum
This, the response spectrum of an elastic structural system, can be obtained by the following steps [10]:

1. Define the ground acceleration time history (typically at a 0.02-second interval).
2. Select the natural period  and damping ratio  of an elastic SDOF system.
3. Compute the deformation response using any numerical method.
4. Determine , the peak value of .
5. Calculate the spectral ordinates by , , and .
6. Repeat Steps 2 and 5 for a range of and  values for all possible cases.
7. Construct results graphically to produce three separate spectra as shown in Figure 35.8 or a

combined tripartite plot as shown in Figure 35.9.

FIGURE 35.7 Induced earthquake force vs. time on an SDOF system.
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It is noted that although three spectra (displacement, velocity, and acceleration) for a specific
ground motion contain the same information, each provides a physically meaningful quantity. The
displacement spectrum presents the peak displacement. The velocity spectrum is related directly to
the peak strain energy stored in the system. The acceleration spectrum is related directly to the peak
value of the equivalent static force and base shear.

A response spectrum (Figure 35.9) can be divided into three ranges of periods [10]:

• Acceleration-sensitive region (very short period region): A structure with a very short period
is extremely stiff and expected to deform very little. Its mass moves rigidly with the ground
and its peak acceleration approximately equals the ground acceleration.

• Velocity-sensitive region (intermediate-period region): A structure with an intermediate
period responds greatly to the ground velocity than other ground motion parameters.

• Displacement-sensitive region (very long period region): A structure with a very long period is extremely
flexible and expected to remain stationary while the ground moves. Its peak deformation is closer to
the ground displacement. The structural response is most directly related to ground displacement.

Elastic Design Spectrum
Since seismic bridge design is intended to resist future earthquakes, use of a response spectrum obtained
from a particular past earthquake motion is inappropriate. In addition, jagged spectrum values over
small ranges would require an unreasonable accuracy in the determination of the structure period [11].
It is also impossible to predict a jagged response spectrum in all its details for a ground motion that
may occur in the future. To overcome these shortcomings, the elastic design spectrum, a smoothened
idealized response spectrum, is usually developed to represent the envelopes of ground motions recorded
at the site during past earthquakes. The development of an elastic design spectrum is based on statistical
analysis of the response spectra for the ensemble of ground motions. Figure 35.10 shows a set of elastic
design spectra in Caltrans Bridge Design Specifications [12]. Figure 35.11 shows project-specific accel-
eration response spectra for the California Sonoma Creek Bridge.

FIGURE 35.8 Example of response spectra (5% critical damping) for Loma Prieta 1989 motion.



      
Engineers should recognize the conceptual differences between a response spectrum and a design
spectrum [10]. A response spectrum is only the peak response of all possible SDOF systems due to
a particular ground motion, whereas a design spectrum is a specified level of seismic design forces
or deformations and is the envelope of two different elastic design spectra. The elastic design
spectrum provides a basis for determining the design force and deformation for elastic SDOF
systems.

Inelastic Response Spectrum
A bridge structure may experience inelastic behavior during a major earthquake. The typical elastic
and elastic–plastic responses of an idealized SDOF to severe earthquake motions are shown in
Figure 35.12. The input seismic energy received by a bridge structure is dissipated by both viscous
damping and yielding (localized inelastic deformation converting into heat and other irrecoverable
forms of energy). Both viscous damping and yielding reduce the response of inelastic structures
compared with elastic structures. Viscous damping represents the internal friction loss of a structure
when deformed and is approximately a constant because it depends mainly on structural materials.
Yielding, on the other hand, varies depending on structural materials, structural configurations,
and loading patterns and histories. Damping has negligible effects on the response of structures for

FIGURE 35.9 Tripartite plot–response spectra (1994 Northridge Earthquake, Arleta–Rordhoff Ave. Fire Station).
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the long-period and short-period systems and is most effective in reducing response of structures
for intermediate-period systems.

In seismic bridge design, a main objective is to ensure that a structure is capable of deforming
in a ductile manner when subjected to a larger earthquake loading. It is desirable to consider the
inelastic response of a bridge system to a major earthquake. Although a nonlinear inelastic dynamic
analysis is not difficult in concept, it requires careful structural modeling and intensive computing

FIGURE 35.10 Typical Caltrans elastic design response spectra.

FIGURE 35.11 Acceleration response spectra for Sonoma Creek Bridge.
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effort [8]. To consider inelastic seismic behavior of a structure without performing a true nonlinear
inelastic analysis, the ductility-factor method can be used to obtain the inelastic response spectra
from the elastic response spectra. The ductility of a structure is usually referred as the displacement
ductility factor  defined by (Figure 35.13):

(35.11)

where ∆u is ultimate displacement capacity and  is yield displacement.
The simplest approach to developing the inelastic design spectrum is to scale the elastic design

spectrum down by some function of the available ductility of a structural system:

(35.12)

(35.13)

FIGURE 35.12 Response of an SDOF to earthquake ground motions. (a) Elastic system; (b) inelastic system.
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For very short period (  ≤ 0.03 sec) in the acceleration-sensitive region, the elastic displacement
demand  is less than displacement capacity  (see Figure 35.13). The reduction factor

 implies that the structure should be designed and remained at elastic to avoid excessive
inelastic deformation. For intermediate period (0.03 sec < ≤ 0.5 sec) in the velocity-sensitive region,
elastic displacement demand  may be greater or less than displacement capacity  and the
reduction factor is based on the equal-energy concept. For the very long period (  > 0.5 sec) in the
displacement-sensitive region, the reduction factor is based on the equal displacement concept.

35.2.5 Example of an SDOF system

Given
An SDOF bridge structure is shown in Figure 35.14. To simplify the problem, the bridge is assumed
to move only in the longitudinal direction. The total resistance against the longitudinal motion
comes in the form of friction at bearings and this could be considered a damper. Assume the
following properties for the structure: damping ratio ξ = 0.05, area of superstructure A = 3.57 m2,
moment of column Ic = 0.1036 m4, Ec of column = 20,700 MPa, material density ρ = 2400 kg/m3,
length of column Lc = 9.14 m, and length of the superstructure Ls = 36.6 m. The acceleration response
curve of the structure is given in the Figure 35.11. Determine (1) natural period of the structure,
(2) damped period of the structure, (3) maximum displacement of the superstructure, and (4)
maximum moment in the column.

Solution

Stiffness: N/m

Mass: kg

Natural circular frequency:  rad/s

FIGURE 35.13 Lateral load–displacement relations.
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Natural cyclic frequency: cycles/s

Natural period of the structure: s

The damped circular frequency is given by

rad/s

The damped period of the structure is given by

s

From the ARS curve, for a period of 0.606 s, the maximum acceleration of the structure will be
0.9 g = 1.13 × 9.82 = 11.10 m/s. Then,

The force acting on the mass = 

The maximum displacement 

The maximum moment in the column 

FIGURE 35.14 SDOF bridge example. (a) Two-span bridge schematic diagram; (b) single column bent; (c) idealized
equivalent model for longitudinal response.
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35.3 Multidegree-of-Freedom System

The SDOF approach may not be applicable for complex structures such as multilevel frame structure
and bridges with several supports. To predict the response of a complex structure, the structure is
discretized with several members of lumped masses. As the number of lumped masses increases,
the number of displacements required to define the displaced positions of all masses increases. The
response of a multidegree of freedom (MDOF) system is discussed in this section.

35.3.1 Equation of Motion

The equation of motion of an MDOF system is similar to the SDOF system, but the stiffness k,
mass m, and damping c are matrices. The equation of motion to an MDOF system under ground
motion can be written as

(35.14)

The stiffness matrix  can be obtained from standard static displacement-based analysis
models and may have off-diagonal terms. The mass matrix  due to the negligible effect of mass
coupling can best be expressed in the form of tributary lumped masses to the corresponding
displacement degree of freedoms, resulting in a diagonal or uncoupled mass matrix. The damping
matrix  accounts for all the energy-dissipating mechanisms in the structure and may have off-
diagonal terms. The vector  is a displacement transformation vector that has values 0 and 1
to define degrees of freedoms to which the earthquake loads are applied.

35.3.2 Free Vibration and Vibration Modes

To understand the response of MDOF systems better, we look at the undamped, free vibration of
an N degrees of freedom (N-DOF) system first.

Undamped Free Vibration
By setting  and to zero in the Eq. (35.14), the equation of motion of undamped, free
vibration of an N-DOF system can be shown as:

(35.15)

where  and  are n × n square matrices.

Equation (35.15) could then be rearranged to

(35.16)

where  is the deflected shape matrix. Solution to this equation can be obtained by setting

(35.17)

The roots or eigenvalues of Eq. (35.17) will be the N natural frequencies of the dynamic system.
Once the natural frequencies ( ) are estimated, Eq. (35.16) can be solved for the corresponding
N independent, deflected shape matrices (or eigenvectors), . In other words, a vibrating system
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with N-DOFs will have N natural frequencies (usually arranged in sequence from smallest to largest),
corresponding N natural periods Tn, and N natural mode shapes . These eigenvectors are
sometimes referred to as natural modes of vibration or natural mode shapes of vibration. It is
important to recognize that the eigenvectors or mode shapes represent only the deflected shape
corresponding to the natural frequency, not the actual deflection magnitude.

The N eigenvectors can be assembled in a single n × n square matrix , modal matrix, where
each column represents the coefficients associated with the natural mode. One of the important
aspects of these mode shapes is that they are orthogonal to each other. Stated mathematically,

If , and (35.18)

(35.19)

(35.20)

where  and  have off-diagonal elements, whereas  and  are diagonal matrices.

Damped Free Vibration
When damping of the MDOF system is included, the free vibration response of the damped system
will be given by

(35.21)

The displacements are first expressed in terms of natural mode shapes, and later they are multi-
plied by the transformed natural mode matrix to obtain the following expression:

(35.22)

where,  and  are diagonal matrices given by Eqs. (35.19) and (35.20) and

(35.23)

While  and  are diagonal matrices,  may have off diagonal terms. When  has
off diagonal terms, the damping matrix is referred to as a nonclassical or nonproportional damping
matrix. When  is diagonal, it is referred to as a classical or proportional damping matrix.
Classical damping is an appropriate idealization when similar damping mechanisms are distributed
throughout the structure. Nonclassical damping idealization is appropriate for the analysis when
the damping mechanisms differ considerably within a structural system.

Since most bridge structures have predominantly one type of construction material, bridge
structures could be idealized as a classical damping structural system. Thus, the damping matrix
of Eq. (35.22) will be a diagonal matrix for most bridge structures. And, the equation of nth mode
shape or generalized nth modal equation is given by

(35.24)

Equation (35.24) is similar to the Eq. (35.7) of an SDOF system. Also, the vibration properties
of each mode can be determined by solving the Eq. (35.24).
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Rayleigh Damping
The damping of a structure is related to the amount of energy dissipated during its motion. It could
be assumed that a portion of the energy is lost due to the deformations, and thus damping could
be idealized as proportional to the stiffness of the structure. Another mechanism of energy dissi-
pation could be attributed to the mass of the structure, and thus damping idealized as proportional
to the mass of the structure. In Rayleigh damping, it is assumed that the damping is proportional
to the mass and stiffness of the structure.

(35.25)

The generalized damping of the nth mode is then given by

(35.26)

(35.27)

(35.28)

(35.29)

Figure 35.15 shows the Rayleigh damping variation with natural frequency. The coefficients
and can be determined from specified damping ratios at two independent dominant modes

(say, ith and jth modes). Expressing Eq. (35.29) for these two modes will lead to the following
equations:

(35.30)

(35.31)

FIGURE 35.15 Rayleigh damping variation with natural frequency.
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When the damping ratio at both the ith and jth modes is the same and equals , it can be shown
that

(35.32)

It is important to note that the damping ratio at a mode between the ith and jth mode is less than
. And, in practical problems the specified damping ratios should be chosen to ensure reasonable

values in all the mode shapes that lie between the ith and jth mode shapes.

35.3.3 Modal Analysis and Modal Participation Factor

In previous sections, we have discussed the basic vibration properties of an MDOF system. Now,
we will look at the response of an MDOF system to earthquake ground motion. The basic equation
of motion of the MDOF for an earthquake ground motion given by Eq. (35.14) is repeated here:

The displacement is first expressed in terms of natural mode shapes, and later it is multiplied by
the transformed natural mode matrix to obtain the following expression:

(35.33)

And, the equation of the nth mode shape is given by

(35.34)

where (35.35)

(35.36)

The Ln is referred to as the modal participation factor of the nth mode.
By dividing the Eq. (35.34) by , the generalized modal equation of the nth mode becomes

(35.37)

Equation (35.34) is similar to the equation motion of an SDOF system, and thus  can be
determined by using methods similar to those described for SDOF systems. Once  is established,
the displacement due to the nth mode will be given by . The total displacement due
to combination of all mode shapes can then be determined by summing up all displacements for
each mode and is given by

(35.38)
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This approach is sometimes referred to as the classical mode superposition method. Similar to
the estimation of the total displacement, the element forces can also be estimated by adding the
element forces for each mode shape.

35.3.4 Example of an MDOF System

Given
The bridge shown in Figure 35.16 is a three-span continuous frame structure. Details of the bridge
are as follows: span lengths are 18.3, 24.5, and 18.3 m.; column length is 9.5 m; area of superstructure
is 5.58 m2; moment of inertia of superstructure is 70.77 m4; moment of inertia of column is 0.218
m4; modulus of elasticity of concrete is 20,700 MPa. Determine the vibration modes and frequencies
of the bridge.

Solution
As shown in Figures 35.16b, c, and d, five degrees of freedom are available for this structure. Stiffness
and mass matrices are estimated separately and the results are given here.

FIGURE 35.16 Three-span continuous framed bridge structure of MDOF example. (a) Schematic diagram; (b)
longitudinal degree of freedom; (c) transverse degree of freedom; (d) rotational degree of freedom; (e) mode shape 1;
(f) mode shape 2; (g) mode shape 3.
© 2000 by CRC Press LLC



Condensation procedure will eliminate the rotational degrees of freedom and will result in three
degrees of freedom. (The condensation procedure is performed separately and the result is given
here.) The equation of motion of free vibration of the structure is

Substituting condensed stiffness and mass matrices into the above equation gives

The above equation can be rearranged in the following form:

Substitution of appropriate values in the above expression gives the following

By assuming different vibration modes, natural frequencies of the structure can be estimated.
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Substitution of vibration mode  will result in the first natural frequency.

Thus, 
By substituting the vibration modes of  and  in the above expression, the

other two natural frequencies are estimated as 32.48 and 97.63 rad/s.

35.3.5 Multiple-Support Excitation

So far we have assumed that all supports of a structural system undergo the same ground motion.
This assumption is valid for structures with foundation supports close to each other. However, for
long-span bridge structures, supports may be widely spaced. As described in Section 35.1.2, earth
motion at a location depends on the localized soil layer and the distance from the epicenter. Thus,
bridge structures with supports that lie far from each other may experience different earth excitation.
For example, Figure 35.17c, d, and e shows the predicted earthquake motions at Pier W3 and
Pier W6 of the San Francisco–Oakland Bay Bridge (SFOBB) in California. The distance between
Pier W3 and Pier W6 of the SFOBB is approximately 1411 m. These excitations are predicted by
the California Department of Transportation by considering the soil and rock properties in the
vicinity of the SFOBB and expected Earth movements at the San Andreas and Hayward faults. Note
that the Earth motion at Pier W3 and Pier W6 are very different. Furthermore, Figures 35.17c, d,
and e indicates that the Earth motion not only varies with the location, but also varies with direction.
Thus, to evaluate the response of long, multiply supported, and complicated bridge structures, use
of the actual earthquake excitation at each support is recommended.

The equation of motion of a multisupport excitation would be similar to Eq. (35.14), but the
only difference is now that is replaced by an displacement array . And, the equation
of motion for the multisupport system becomes

(35.39)

where  has the acceleration at each support locations and has zero value at nonsupport
locations. By using the uncoupling procedure described in the previous sections, the modal equation
of the nth mode can be written as

(35.40)

where Ng is the total number of externally excited supports.
The deformation response of the nth mode can then be determined as described in previous

sections. Once the displacement responses of the structure for all the mode shapes are estimated,
the total dynamic response can be obtained by combining the displacements.

35.3.6 Time History Analysis

When the structure enters the nonlinear range, or has nonclassical damping properties, modal
analysis cannot be used. A numerical integration method, sometimes referred to as time history
analysis, is required to get more accurate responses of the structure.
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In a time history analysis, the timescale is divided into a series of smaller steps, dτ. Let us say the
response at ith time interval has already determined and is denoted by . Then, the response
of the system at ith time interval will satisfy the equation of motion (Eq. 35.39).

(35.41)

FIGURE 35.17 San Francisco–Oakland Bay Bridge. (a) Vicinity map; (b) general plan elevation; (c) longitudinal
motion at rock level; (d) transverse motion at rock level; (e) vertical motion at rock level; (f) displacement response
at top of Pier W3.
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The time-stepping method enables us to step ahead and determine the responses  at
the i + 1th time interval by satisfying Eq. (35.39). Thus, the equation of motion at i + 1th time interval
will be

(35.42)

Equation (35.42) needs to be solved prior to proceeding to the next time step. By stepping through
all the time steps, the actual response of the structure can be determined at all time instants.

Example of Time History Analysis
The Pier W3 of the SFOBB was modeled using the ADINA [13] program and nonlinear analysis
was performed using the displacement time histories. The displacement time histories in three
directions are applied at the bottom of the Pier W3 and the response of the Pier W3 was studied
to estimate the demand on Pier W3. One of the results, the displacement response at top of Pier W3,
is shown in Figure 35.17f.

35.4 Response Spectrum Analysis

Response spectrum analysis is an approximate method of dynamic analysis that gives the maximum
response (acceleration, velocity, or displacement) of an SDOF system with the same damping ratio,
but with different natural frequencies, respond to a specified seismic excitation. Structural models
with n degrees of freedom can be transformed to n single-degree systems and response spectra
principles can be applied to systems with many degrees of freedom. For most ordinary bridges, a
complete time history is not required. Because the design is generally based on the maximum
earthquake response, response spectrum analysis is probably the most common method used in
design offices to determine the maximum structural response due to transient loading. In this
section, we will discuss basic procedures of response spectrum analysis for bridge structures.

35.4.1 Single-Mode Spectral Analysis

Single-mode spectral analysis is based on the assumption that earthquake design forces for structures
respond predominantly in the first mode of vibration. This method is most suitable to regular linear
elastic bridges to compute the forces and deformations, but is not applicable to irregular bridges
(unbalanced spans, unequal stiffness in the columns, etc.) because higher modes of vibration affect
the distribution of the forces and resulting displacements significantly. This method can be applied
to both continuous and noncontinuous bridge superstructures in either the longitudinal or trans-
verse direction. Foundation flexibility at the abutments can be included in the analysis.

Single-mode analysis is based on Rayleigh’s energy method — an approximate method which
assumes a vibration shape for a structure. The natural period of the structure is then calculated by
equating the maximum potential and kinetic energies associated with the assumed shape. The
inertial forces  are calculated using the natural period, and the design forces and displacements
are then computed using static analysis. The detailed procedure can be described in the following
steps:

1. Apply uniform loading  over the length of the structure and compute the corresponding
static displacements . The structure deflection under earthquake loading, is
then approximated by the shape function, , multiplied by the generalized amplitude
function, , which satisfies the geometric boundary conditions of the structural system.
This dynamic deflection is shown as

(35.43)

u u ui i i+ + +1 1 1, ˙ , ˙̇

M C K M[ ] { } + [ ] { } + [ ] { } = −[ ] { }+ + + +˙̇ ˙ ˙̇u u u ui i i gi1 1 1 1

p xe( )

po

u xs ( ) u x ts ( , )
u xs ( )

u t( )

u x t u x u ts( , ) ( ) ( )=
© 2000 by CRC Press LLC



2. Calculate the generalized parameters  and  using the following equations:

(35.44)

(35.45)

(35.46)

where  is the weight of the dead load of the bridge superstructure and tributary
substructure.

3. Calculate the period 

(35.47)

where  is acceleration of gravity (mm/s2).
4. Calculate the static loading which approximates the inertial effects associated with the

displacement  using the ARS curve or the following equation [4]:

(35.48)

(35.49)

where  is the dimensionless elastic seismic response coefficient;  is the acceleration
coefficient from the acceleration coefficient map;  is the dimensionless soil coefficient based
on the soil profile type;  is the period of the structure as determined above;  is the
intensity of the equivalent static seismic loading applied to represent the primary mode of
vibration (N/mm).

5. Apply the calculated loading  to the structure as shown in the Figure 35.18 and compute
the structure deflections and member forces.

This method is an iterative procedure, and the previous calculations are used as input parameters
for the new iteration leading to a new period and deflected shape. The process is continued until
the assumed shape matches the fundamental mode shape.

35.4.2 Uniform-Load Method

The uniform-load method is essentially an equivalent static method that uses the uniform lateral
load to compute the effect of seismic loads. For simple bridge structures with relatively straight
alignment, small skew, balanced stiffness, relatively light substructure, and with no hinges, the
uniform-load method may be applied to analyze the structure for seismic loads. This method is
not suitable for bridges with stiff substructures such as pier walls. This method assumes continuity
of the structure and distributes earthquake force to all elements of the bridge and is based on the
fundamental mode of vibration in either a longitudinal or transverse direction [5]. The period of
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vibration is taken as that of an equivalent single mass–spring oscillator. The maximum displacement
that occurs under the arbitrary uniform load is used to calculate the stiffness of the equivalent
spring. The seismic elastic response coefficient  or the ARS curve is then used to calculate the
equivalent uniform seismic load, using which the displacements and forces are calculated. The
following steps outline the uniform load method:

FIGURE 35.18 Single-mode spectral analysis method. (a) Plan view of a bridge subjected to transverse earthquake
motion. (b) Displacement function describing the transverse position of the bridge deck. (c) Deflected shape due to
uniform static loading. (d) Transverse free vibration of the bridge in assumed mode shape. (e) Transverse loading
(f) longitudinal loading.

Csm
© 2000 by CRC Press LLC



1. Idealize the structure into a simplified model and apply a uniform horizontal load  over
the length of the bridge as shown in Figure 35.19. It has units of force/unit length and may
be arbitrarily set equal to 1 N/mm.

2. Calculate the static displacements  under the uniform load  using static analysis.
3. Calculate the maximum displacement  and adjust it to 1 mm by adjusting the uniform

load .
4. Calculate bridge lateral stiffness K using the following equation:

(35.50)

where L is total length of the bridge (mm); and  is maximum displacement (mm).
5. Calculate the total weight W of the structure including structural elements and other relevant

loads such as pier walls, abutments, columns, and footings, by

(35.51)

where w(x) is the nominal, unfactored dead load of the bridge superstructure and tributary
substructure.

6. Calculate the period of the structure  using the following equation:

(35.52)

where g is acceleration of gravity (m/s2).

FIGURE 35.19 Structure idealization and deflected shape for uniform load method. (a) Structure idealization; (b)
deflected shape with maximum displacement of 1 mm.
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7. Calculate the equivalent static earthquake force  using the ARS curve or using the following
equation:

(35.53)

8. Calculate the structure deflections and member forces by applying to the structure.

35.4.4 Multimode Spectral Analysis

The multimode spectral analysis method is more sophisticated than single-mode spectral analysis
and is very effective in analyzing the response of more complex linear elastic structures to an
earthquake excitation. This method is appropriate for structures with irregular geometry, mass, or
stiffness. These irregularities induce coupling in three orthogonal directions within each mode of
vibration. Also, for these bridges, several modes of vibration contribute to the complete response
of the structure. A multimode spectral analysis is usually done by modeling the bridge structure
consisting of three-dimensional frame elements with structural mass lumped at various locations
to represent the vibration modes of the components. Usually, five elements per span are sufficient
to represent the first three modes of vibration. A general rule of thumb is, to capture the  mode
of vibration, the span should have at least  elements. For long-span structures many more
elements should be used to capture all the contributing modes of vibration. To obtain a reasonable
response, the number of modes should be equal to at least three times the number of spans. This
analysis is usually performed with a dynamic analysis computer program such as ADINA [13],
GTSTRUDL [14], SAP2000 [15], ANSYS [16], and NASTRAN [17]. For bridges with outrigger
bents, C-bents, and single column bents, rotational moment of inertia of the superstructure should
be included. Discontinuities at the hinges and abutments should be included in the model. The
columns and piers should have intermediate nodes at quarter points in addition to the nodes at the
ends of the columns.

By using the programs mentioned above, frequencies, mode shapes, member forces, and joint
displacements can be computed. The following steps summarize the equations used in the multi-
mode spectral analysis [5].

1. Calculate the dimensionless mode shapes  and corresponding frequencies  by

(35.54)

where

(35.55)

modal amplitude of jth mode; shape factor of jth mode; mode-shape matrix.
The periods for ith mode can then be calculated by

(35.56)
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2. Determine the maximum absolute mode amplitude for the entire time history is given by

(35.57)

where  is the acceleration response spectral value; is the elastic seismic
response coefficient for mode m = ;  is the acceleration coefficient from the
acceleration coefficient map;  is the dimensionless soil coefficient based on the soil profile
type;  is the period of the nth mode of vibration.

3. Calculate the value of any response quantity Z(t) (shear, moment, displacement) using the
following equation:

(35.58)

where coefficients Ai are functions of mode shape matrix (Φ) and force displacement relation-
ships.

4. Compute the maximum value of Z(t) during an earthquake using the mode combination
methods described in the next section.

Modal Combination Rules
The mode combination method is a very useful tool for analyzing bridges with a large number of
degrees of freedom. In a linear structural system, maximum response can be estimated by mode
combination after calculating natural frequencies and mode shapes of the structure using free
vibration analysis. The maximum response cannot be computed by adding the maximum response
of each mode because different modes attain their maximum values at different times. The absolute
sum of the individual modal contributions provides an upper bound which is generally very
conservative and not recommended for design. There are several different empirical or statistical
methods available to estimate the maximum response of a structure by combining the contributions
of different modes of vibrations in a spectral analysis. Two commonly used methods are the square
root of sum of squares (SRSS) and the complete quadratic combination (CQC).

For an undamped structure, the results computed using the CQC method are identical to those
using the SRSS method. For structures with closely spaced dominant mode shapes, the CQC method
is precise whereas SRSS estimates inaccurate results. Closely spaced modes are those within 10% of
each other in terms of natural frequency. The SRSS method is suitable for estimating the total
maximum response for structures with well-spaced modes. Theoretically, all mode shapes must be
included to calculate the response, but fewer mode shapes can be used when the corresponding
mass participation is over 85% of the total structure mass. In general, the factors considered to
determine the number of modes required for the mode combination are dependent on the structural
characteristics of the bridge, the spatial distribution, and the frequency content of the earthquake
loading. The following list [14] summarizes several commonly used mode combination methods
to compute the maximum total response. The variable  represents the maximum value of some
response quantity (displacement, shear, etc.),  is the peak value of that quantity in the  mode,
and  is the total number of contributing modes.

1. Absolute Sum: The absolute sum is sum of the modal contributions:

(35.59)
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2. SRSS or Root Mean Square (RMS) Method: This method computes the maximum by taking
the square root of sum of squares of the modal contributions:

(35.60)

3. Peak Root Mean Square (PRMS): Absolute value of the largest modal contribution is added
to the root mean square of the remaining modal contributions:

(35.61)

(35.62)

4. CQC: Cross correlations between all modes are considered:

(35.63)

(35.64)

where

(35.65)

5. Nuclear Regulatory Commission Grouping Method: This method is similar to RMS method
with additional accounting for groups of modes whose frequencies are within 10%.

(35.66)

where  is number of groups;  is mode shape number where the  group starts;  is
mode shape number where the   group ends; and  is the  modal contribution in
the  group.

6. Nuclear Regulatory Commission Ten Percent Method: This method is similar to the RMS
method with additional accounting for all modes whose frequencies are within 10%.

(35.67)
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The additional terms must satisfy

(35.68)

7. Nuclear Regulatory Commission Double Sum Method: This method is similar to the CQC
method.

(35.69)

(35.70)

(35.71)

(35.72)

where  is the duration of support motion.

Combination Effects
Effects of ground motions in two orthogonal horizontal directions should be combined while
designing bridges with simple geometric configurations. For bridges with long spans, outrigger
bents, and with cantilever spans, or where effects due to vertical input are significant, vertical input
should be included in the design along with two orthogonal horizontal inputs. When bridge
structures are analyzed independently along each direction using response spectra analysis, then
responses are combined either using methods, such as the SRSS combination rule as mentioned in
the previous section, or using the alternative method described below. For structures designed using
equivalent static analysis or modal analysis, seismic effects should be determined using the following
alternative method for the following load cases:

1. Seismic load case 1: 100% Transverse + 30% Longitudinal + 30% Vertical
2. Seismic load case 2: 30% Transverse + 100% Longitudinal + 30% Vertical
3. Seismic load case 3: 30% Transverse + 30% Longitudinal + 100% Vertical

For structures designed using time-history analysis, the structure response is calculated using the
input motions applied in orthogonal directions simultaneously. Where this is not feasible, the above
alternative procedure can be used to combine the independent responses.

35.4.4 Multiple-Support Response Spectrum Method

Records from recent earthquakes indicate that seismic ground motions can significantly vary at
different support locations for multiply supported long structures. When different ground motions
are applied at various support points of a bridge structure, the total response can be calculated by
superposition of responses due to independent support input. This analysis involves combination
of dynamic response from single-input and pseudo-static response resulting from the motion of
the supports relative to each other. The combination effects of dynamic and pseudo-static forces
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due to multiple support excitation on a bridge depend on the structural configuration of the bridge
and the ground motion characteristics. Recently, Kiureghian et al. [7] presented a comprehensive
study on the multiple-support response spectrum (MSRS) method based on fundamental principles
of stationary random vibration theory for seismic analysis of multiply supported structures which
accounts for the effects of variability between the support motions. Using the MSRS combination
rule, the response of a linear structural system subjected to multiple support excitation can be computed
directly in terms of conventional response spectra at the support degrees of freedom and a coherency
function describing the spatial variability of the ground motion. This method accounts for the three
important effects of ground motion spatial variability, namely, the incoherence effects, the wave passage
effect, and the site response effect. These three components of ground motion spatial variability can
strongly influence the response of multiply supported bridges and may amplify or deamplify the
response by one order of magnitude. Two important limitations of this method are nonlinearities in
the bridge structural components and/or connections and the effects of soil–structure interaction. This
method is an efficient, accurate, and versatile solution and requires less computational time than a true
time history analysis. Following are the steps that describe the MSRS analysis procedure.

1. Determine the necessity of variable support motion analysis: Three factors that influence the
response of the structure under multiple support excitation are the distance between the
supports of the structure, the rate of variability of the local soil conditions, and the stiffness
of the structure. The first factor, the distance between the supports, influences the incoherence
and wave passage effects. The second factor, the rate of variability of the local conditions,
influences the site response. The third factor, the stiffness of the superstructure, plays an
important role in determining the necessity of variable-support motion analysis. Stiff struc-
tures such as box-girder bridges may generate large internal forces under variable support
motion, whereas flexible structures such as suspension bridges easily conform to the variable
support motion.

2. Determine the frequency response function for each support location. Programs such as SHAKE
[18] can be used to develop these functions using borehole data and time-domain site
response analysis. Response spectra plots, peak ground displacements in three orthogonal
directions for each support location, and a coherency function for each pair of degrees of
freedom are required to perform the MSRS analysis. The comprehensive report by Kiureghian
[7] provides all the formulas required to account for the effect of nonlinearity in the soil
behavior and the site frequency involving the depth of the bedrock.

3. Calculate the Structural Properties: such as effective modal frequencies, damping ratios, influ-
ence coefficients and effective modal participation factors (  and ) are to be
computed externally and provided as input.

4. Determine the response spectra plots, peak ground displacements in three directions, and a
coherency function for each pair of support degrees of freedom required to perform MSRS analysis:
Three components of the coherency function are incoherence, wave passage effect, and site
response effect. Analysis by an array of recordings is used to determine the incoherence
component. The models for this empirical method are widely available [19]. Parameters such
as shear wave velocity, the direction of propagation of seismic waves, and the angle of
incidence are used to calculate the wave passage effect. The frequency response function
determined in the previous steps is used to calculate the site response component.

35.5 Inelastic Dynamic Analysis

35.5.1 Equations of Motion

Inelastic dynamic analysis is usually performed for the safety evaluation of important bridges to
determine the inelastic response of bridges when subjected to design earthquake ground motions.

ω ξi i ka, , , bki
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Inelastic dynamic analysis provides a realistic measure of response because the inelastic model
accounts for the redistribution of internal actions due to the nonlinear force displacement behavior
of the components [20–25]. Inelastic dynamic analysis considers nonlinear damping, stiffness, load
deformation behavior of members including soil, and mass properties. A step-by-step integration
procedure is the most powerful method used for nonlinear dynamic analysis. One important assump-
tion of this procedure is that acceleration varies linearly while the properties of the system such as
damping and stiffness remain constant during the time interval. By using this procedure, a nonlinear
system is approximated as a series of linear systems and the response is calculated for a series of small
equal intervals of time  and equilibrium is established at the beginning and end of each interval.

The accuracy of this procedure depends on the length of the time increment . This time
increment should be small enough to consider the rate of change of loading , nonlinear
damping and stiffness properties, and the natural period of the vibration. An SDOF system and its
characteristics are shown in the Figure 35.20. The characteristics include spring and damping forces,
forces acting on mass of the system, and arbitrary applied loading. The force equilibrium can be
shown as

(35.73)

and the incremental equations of motion for time t can be shown as

(35.74)

Current damping , elastic forces  are then computed using the initial velocity ,
displacement values , nonlinear properties of the system, damping , and stiffness for
that interval. New structural properties are calculated at the beginning of each time increment based
on the current deformed state. The complete response is then calculated by using the displacement
and velocity values computed at the end of each time step as the initial conditions for the next time
interval and repeating until the desired time.

35.5.2 Modeling Considerations

A bridge structural model should have sufficient degrees of freedom and proper selection of lin-
ear/nonlinear elements such that a realistic response can be obtained. Nonlinear analysis is usually
preceded by a linear analysis as a part of a complete analysis procedure to capture the physical and
mechanical interactions of seismic input and structure response. Output from the linear response
solution is then used to predict which nonlinearities will affect the response significantly and to
model them appropriately. In other words, engineers can justify the effect of each nonlinear element
introduced at the appropriate locations and establish the confidence in the nonlinear analysis. While
discretizing the model, engineers should be aware of the trade-offs between the accuracy, compu-
tational time, and use of the information such as the regions of significant geometric and material
nonlinearities. Nonlinear elements should have material behavior to simulate the hysteresis relations
under reverse cyclic loading observed in the experiments.

The general issues in modeling of bridge structures include geometry, stiffness, mass distribution,
and boundary conditions. In general, abutments, superstructure, bent caps, columns and pier walls,
expansion joints, and foundation springs are the elements included in the structural model. The
mass distribution in a structural model depends on the number of elements used to represent the
bridge components. The model must be able to simulate the vibration modes of all components
contributing to the seismic response of the structure.

Superstructure: Superstructure and bent caps are usually modeled using linear elastic three-
dimensional beam elements. Detailed models may require nonlinear beam elements.

∆t
∆t

p t( )

f t f t f t p ti d s( ) ( ) ( ) ( )+ + =

m u t c t u t k t u t p t∆ ∆ ∆ ∆˙̇ ( ) ( ) ˙( ) ( ) ( ) ( )+ + =

f td ( ) f ts( ) ˙( )u t
u t( ) c t( ) k t( )
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Columns and pier walls: Columns and pier walls are usually modeled using nonlinear beam
elements having response properties with a yield surface described by the axial load and biaxial
bending. Some characteristics of the column behavior include initial stiffness degradation due to
concrete cracking, flexural yielding at the fixed end of the column, strain hardening, pinching at
the point of load reversal. Shear actions can be modeled using either linear or nonlinear load
deformation relationships for columns. For both columns and pier walls, torsion can be modeled
with linear elastic properties. For out-of-plane loading, flexural response of a pier wall is similar to
that of columns, whereas for in-plane loading the nonlinear behavior is usually shear action.

Expansion joints: Expansion joints can be modeled using gap elements that simulate the nonlinear
behavior of the joint. The variables include initial gap, shear capacity of the joint, and nonlinear
load deformation characteristics of the gap.

Foundations and abutments: Foundations are typically modeled using nonlinear spring elements
to represent the translational and rotational stiffness of the foundations to represent the expected
behavior during a design earthquake. Abutments are modeled using nonlinear spring and gap
elements to represent the soil action, stiffness of the pile groups, and gaps at the seat.

FIGURE 35.20 Definition of a nonlinear dynamic system. (a) Basis SDOF structure; (b) force equilibrium; (c)
nonlinear damping; (d) nonlinear stiffness; (e) applied load.
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35.6 Summary

This chapter has presented the basic principles and methods of dynamic analysis for the seismic
design of bridges. Response spectrum analysis — the SDOF or equivalent SDOF-based equivalent
static analysis — is efficient, convenient, and most frequently used for ordinary bridges with simple
configurations. Elastic dynamic analysis is required for bridges with complex configurations. A
multisupport response spectrum analysis recently developed by Kiureghian et al. [7] using a lumped-
mass beam element mode may be used in lieu of an elastic time history analysis.

Inelastic response spectrum analysis is a useful concept, but the current approaches apply only
to SDOF structures. An actual nonlinear dynamic time history analysis may be necessary for some
important and complex bridges, but linearized dynamic analysis (dynamic secant stiffness analysis)
and inelastic static analysis (static push-over analysis) (Chapter 36) are the best possible alternatives
[8] for the most bridges.
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