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1.  INTRODUCTION 
 

This report provides technical documentation for the Friction Pendulum-Double Concave (FP-DC) 
seismic isolation bearing. The FP-DC bearing is an adaptation of the traditional, well-proven single 
concave FP bearing that allows for significantly larger displacements for identical FP bearing plan 
dimensions. This document and its revisions can be used to support the use of FP-DC bearings on 
building, bridge and infrastructure projects in the United States and abroad 

The next five sections of this report present the following information on FP-DC bearings: 

• Principles of operation. 

• Derivation of force-displacement relations, decomposition of motion on sliding surfaces, 
sensitivity on property variability and calculation of effective propertie s. 

• Experimental results. 

• List of applications of FP-DC bearings 

• Analysis and design considerations for FP-DC bearings. 

An earthquake-simulator testing program is soon to be undertaken at the University at Buffalo that will 
involve four model-scale FP bearings. The results of those tests will be reported in another report. The 
author of this report will be the lead investigator for this earthquake-simulator project. 

This report contains seven sections and two appendices. Figures follow the references, which appear in 
Section 7. Appendices A and B, which present force-displacement loops from large-scale FP-DC bearing 
tests, follow the figures. 
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2.  FP-DC BEARING PRINCIPLES OF OPERATION 

This section of the report describes the principles of operation of the FP-DC bearing. Figure 1 shows 
sections through a FP-DC bearing at the three stages of lateral displacement: 1) zero displacement; 2) 
displaced with sliding on the lower concave surface only; and 3) maximum displacement. A discussion of 
the response of the FP-DC bearing at each of these stages is presented below.  

Zero displacement 

The bearing consists of two facing concave surfaces. The upper and lower concave surfaces have radii of 
curvature 1R  and 2R , respectively, that might not be equal. The coefficients of friction on these two 
sliding surfaces are 1µ  and 2µ , respectively. An articulated slider separates the two concave surfaces. 
The articulation is necessary for proper distribution of pressure on the sliding surfaces and to 
accommodate differential movements along the top and bottom sliding surfaces. Figures 2 to 4 show 
views of a small-scale FP-DC bearing tested at the University at Buffalo  in October 2004. The bearing 
components are shown in Figures 2 and 3 where the articulated slider is shown assembled and 
disassembled in the two figures. The assembled bearing is shown in Figure 4. 

Displaced with sliding on the lower concave surface only 

In Figure 1b, the bearing is shown to undergo sliding on the lower concave surface only.  This is possible 
when the coefficient of friction on the lower sliding interface is less than the coefficient of friction on the 
upper sliding surface, that is, 2 1µ µ< . In Section 3 of this report, it is shown that initially sliding occurs 
on the surface with the least friction and is followed by sliding on both surfaces regardless of either the 
radii of curvature or the values of coefficient of friction of the two interfaces. In these cases, sliding will 
be at unequal displacement increments on the two surfaces. 

Maximum displacement 

The displacement capacity of the bearing equals 2d, where d is the maximum displacement on a single 
concave surface. This dimension is shown in Figure 1. 

Section 3 provides more information on the operation of the FP-DC bearing and proves that  

1. The condition of sliding on one concave surface occurs only at initial movement and generally 
will involve only small lateral displacements. 

2. When sliding commences simultaneously on both concave surfaces, the restoring (spring) force 

rF  is given by 

 

 
1 2 1 2

r
W

F u
R R h h

= ⋅
+ − −

 (1) 

where u is the displacement of the upper concave plate with respect to the lower concave plate 
(i.e., the bearing displacement) and W is the vertical compressive load on the bearing. The friction 
force fF  is given by 
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1 2 1 2

( ) ( )
f

R h W R h W
F

R R h h
µ µ− + −=

+ − −
     (2) 

3. Most applications of FP-DC bearings will likely utilize concave surfaces of equal radii, namely, 
1 2R R= . Part heights of the articulated slider, 1h  and 2h  are nearly equal in most cases. If  
1 2R R=  and 1 2h h= , the bearing behaves as a standard FP bearing with effective coefficient of 

friction equal to the average of 1µ  and 2µ .  
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3.  FORCE-DISPLACEMENT RELATIONS OF FP-DC BEARING 

In deriving the force-displacement relation of the FP-DC bearing, motion on the top sliding surface and 
then on the bottom sliding surface is considered separately. Consider the configuration shown in Figure 
1(a) and assume that the slider is fixed to the bottom concave plate that displaces to the right under the 
action of a lateral force. As a result, the slider moves on the top concave plate. Figure 5 shows a free body 
diagram of the articulated slider. The forces acting on the slider are: 

1. The vertical load, W, which acts at the pivot point. 

2. The lateral force, 1F , transferred through the bottom part of the bearing and acting on the top part 
of the slider. 

3. The friction force, 1fF , acting on the sliding interface. 

4. The normal force, 1S , acting on the sliding interface (shown off-center of the slider so that 
moment equilibrium is satisfied).   

5. Friction traction along the spherical surface of the articulated slider. 

Equilibrium of the slider in the vertical and horizontal directions gives: 

 1 1 1 1cos sin 0fW S Fθ θ− + =  (3) 

 1 1 1 1 1sin cos 0fF S Fθ θ− − =  (4) 

By geometry, 

 1 1 1 1( )sinu R h θ= −  (5) 

where 1u  is the movement of the slider on the top concave surface. Combining equations (3), (4) and (5), 
gives  

 1
1 1

1 1 1 1( )cos cos
fFW

F u
R h θ θ

= +
−

 (6) 

A similar analysis of equilibrium for sliding on the bottom concave surface gives: 

 2 2 2 2( )sinu R h θ= −  (7) 

and 

 2
2 2

2 2 2 2( )cos cos
fFW

F u
R h θ θ

= +
−

 (8) 

where 2u  is the movement of the slider on the bottom concave surface, 2F  is the lateral force transferred 
through the top part of the bearing and acting on the bottom part of the slider, 2fF  is the friction force 
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acting on the bottom sliding surface of the slider and 2θ  is the angle of rotation of the bottom part of the 
articulated slider. 

Equations (3) to (8) can be simplified when angles 1θ  and 2θ  are small so that 1 2cos cos 1θ θ≈ ≈ , 
1 1sinθ θ≈  and 2 2sinθ θ≈  to give  

 1 1 1
1 1

f
W

F u F
R h

= +
−

 (9) 

 2 2 2
2 2

f
W

F u F
R h

= +
−

 (10) 

The total movement (displacement) of the bearing is 

 1 2u u u= +  (11) 

Furthermore, the horizontal component of the force transferred through the bearing (excluding the 
insignificant inertia forces associated with the moving parts of the bearing) is: 

 1 2F F F= =  (12) 

Using equations (9) through (12): 

 1 1 1 2 2 2

1 2 1 2 1 2 1 2

( ) ( )f fF R h F R hW
F u

R R h h R R h h

− + −  
= +   

+ − − + − −   
 (13) 

 1
1 1 1( )fF F

u R h
W

− 
= − 

 
 (14) 

 2
2 2 2( )fF F

u R h
W

− 
= − 

 
 (15) 

Equation (13) is valid when sliding occurs on both concave surfaces. It is valid for displacement u larger 
than a limit *u , which is established as follows.  

Let 1 1fF Wµ= , 2 2fF Wµ=  and assume that 1 2µ µ< .  Upon the application of a lateral force F on the 
bearing, sliding will occur on the top concave surface where the coefficient of friction is smallest. Motion 
will continue with 1u u= , 2 0u = , and 1F F=  where 1F  is given by (9). This condition will continue 
until 1 2fF F F= = . Thereafter, sliding will occur on both surfaces and (13) is valid. Equating 1F  in (9) to 

2fF  gives: 

 

 *
2 1 1 1( )( )u R hµ µ= − −  (16) 

 



 7 

A sample force-displacement relationship for a FP-DC bearing is shown in Figure 6. Consider the 
following two combinations of geometry and friction. 

Combination 1 

The two concave surfaces have equal radii, so that 1 1 2 2 84in. 2134mmR h R h− = − = = . Let the nominal 
friction coefficient be 0.05 but due to variability in the properties 1 0.045µ =  and 2 0.055µ = . This 
situation might be typical of FP-DC bearings. It follows that * 0.84in. 21.3mmu = =  and the effective 
coefficient of friction, eµ , given by the second term in (13) upon division by W is 0.05: 

 1 1 1 2 2 2

1 2 1 2

( ) ( )
e

R h R h
R R h h

µ µµ − + −=
+ − −

 (17) 

The resulting force-displacement relationship is shown in Figure 7(a). 

Combination 2 

In combination 2, the FP-DC bearing has 1 1 39in. 991mmR h− = = , 2 2 120in. 3048mmR h− = = , 1 0.03µ = , 
and 2 0.06µ = : a bearing with a significant  restoring force and re-centering capability for weak seismic 
excitation.  In this case, * 1.17in. 29.7mmu = =  and 0.0526eµ = . The resulting force-displacement 
relationship is shown in Figure 7(b). 

For the typical FP-DC bearing of Figure 7(a), namely, 1 1 2 2R h R h− = −  and 1 2µ µ≈ , the bearing 
behavior can be represented by a rigid-linear model with characteristic strength equal to eWµ  and 
stiffness equal to 2 1 21( )W R R h h+ − − . The bearing behavior of Figure 7(b) warrants representation 
using a rigid-bilinear model. 
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4.  EXPERIMENTAL RESULTS 
 

Section 4 of the report presents three sets of data from tests of FP-DC bearings with concave surfaces of 
equal radii. 

Dataset 1 

Dataset 1 involves tests of a small-scale FP-DC bearing at the University at Buffalo. The test bearing is 
shown in Figures 2 to 4.  A drawing of the bearing is shown in Figure 8.  (Note that the ring retainer of 
the bearing was machined to remove material in order to be able to instrument the bearing and to observe 
the interior movement during testing-compare Figure 8 to Figure 4).  The bearing consists of two identical 
concave plates of 18.65 in. radius of curvature and a slider of 3 in. in diameter and 2.65 in. height.  It has 
a displacement capacity of ±6 in.  Figures 9 to 11 present views of the bearing in the testing machine at 
the University at Buffalo at various stages of deformation.  The cable of the transducer (string pot) used to 
measure the displacement of the slider on the top concave surface is visible in these figures.  Moreover, 
the relative displacement of the top and bottom concave surfaces was directly measured, allowing for 
decomposition of the motion to the two components on the two concave surfaces. 

Results of two tests are reported herein.  Both were conducted under the following conditions: vertical 
load of 13.3 kip, 3 fully-reversed cycles of sinusoidal lateral motion at amplitude of 4.0 in. and frequency 
of 0.1 Hz.  The peak velocity in the tests was 2.5 in/sec (64 mm/sec), however the peak sliding velocity 
was less but generally exceeding 1.0 in/sec (2.5 in/sec is the velocity of the top concave surface with 
respect to the bottom concave surface-it is not the peak sliding velocity).   The material used at the sliding 
interface typically exhibits peak friction at sliding velocities exceeding 1.0 in/sec (this is the material 
identified as PTFE composite No.1 in Constantinou et al, 1999).   

The two tests were conducted under different frictional conditions at the sliding interfaces:  

1. With the two sliding interfaces having nearly identical frictional properties.  For this case, Figure 
12 presents the recorded histories of bearing displacement and velocity, and Figure 13 presents 
the recorded normalized lateral force-lateral displacement loops.  The velocity histories were 
obtained by numerical differentiation of the displacement records. The normalization of the 
lateral force is by the normal force in order to easily extract the frictional characteristics.  In this 
case, 1 1- 18.65-1.40 17.25 . 438R h in mm= = = and 2 2 18.65 1.25 17.4 . 442R h in mm− = − = = (top 
surface is denoted as surface 1) and the friction coefficients on the two sliding surfaces are nearly 
identical.  The result is rigid-linear behavior as depicted in Figure 12 and identical sliding 
motions on the two concave surfaces as demonstrated in the displacement and velocity histories 
in Figure 13. The effective friction coefficient is 0.05eµ = .  This implies that 1 2 0.05µ µ≈ = .  
Observations of the bearing during testing (video is available) confirmed that sliding on the two 
concave surfaces was concurrent. 

2. With the bottom sliding interface lubricated so that the two sliding interfaces have substantially 
different frictional properties.  The recorded histories of bearing displacement and velocity are 
presented in Figure 14 and the recorded loops are presented in Figure 15.  Observations during 
testing (video is available) confirmed that sliding initiated on the bottom surface (surface of least 
friction), that on reversal of motion sliding initially occurred only on the bottom surface and that 
the histories of motion on the two surfaces were different.   The rigid-bilinear nature of the 
recorded loops is consistent with the theory presented in Section 3.  Specifically, the effective 
coefficient of friction was obtained from the recorded normalized force at zero displacement 



 9 

as 0.0359eµ = .  The coefficient of friction on the lubricated bottom sliding interface was 
determined as one half of the drop in the normalized force on reversal of motion to be 

2 0.0168µ = (to derive this value, a reconstruction of the loop at maximum displacement was 
needed given the “rounding” of the loops due to velocity effects on the value of the friction).  The 
coefficient of friction on the top sliding surface was then calculated by use of (17) to be 

1 0.055.µ = This value is consistent with what was obtained in the testing of the un-lubricated 
bearing ( 1 2 0.05µ µ≈ = , so that it could be that 1 0.055µ = ).   The two slopes of the ascending 
branch of the recorded normalized loops were determined by graphical means to be 1/17.0 in.-1 

and 1/35.4 in.-1.  The theoretical expressions for the normalized stiffness are 

1 11/( )R h− and 2 1 211 ( )R R h h+ − − , respectively, giving values of 1/17.4 in.-1 and 1/34.7 in.-1.  
Thus, the measured values of stiffness are within 2% of the theoretically derived values.  
Moreover, the value of sliding displacement on the bottom concave surface during reversal of 

motion after reaching maximum displacement is *2u , where *
1 2 2 2( )( )u R hµ µ= − − as given by 

(16) but with subscripts 1 and 2 interchanged (the bottom surface is of lower friction rather than 

the top one).  The measured value of *2u is 1.35 in. and the theoretical value is 
*

1 2 2 22u 2( )(R h ) 2(0.055 0.0168)17.4 1.33inµ µ= − − = − = , which is in very good agreement 
with the measured value.  Figure 16 illustrates the reconstruction of the loop and the graphical 
estimation of parameters. 

Dataset 2 

Figure 17 shows the geometric characteristics of the bearing. Figure 18 presents views of the bearing 
during testing in the large bearing testing machine of Earthquake Protection Systems, Inc., Vallejo, 
California.  The bearing consists of two identical concave plates with a radius of curvature of 61 in. (1549 
mm). The effective radius is 1 1 2 2 113.5in. 2883mmR h R h− + − = = . The bearing was tested at the slow 
speed (1 in./sec = 25 mm/sec) the machine is currently capable of achieving. The experimental force-
displacement loops presented in Appendix A were recorded in tests at normal temperature with 1 to 4 
cycles of imposed motion at amplitude of up to 8 in. (203 mm), peak velocity of 1 in/sec (25 mm/sec) and 
vertical load in the range of 250 to 1,270 kip (1,113 to 5,652 kN). The average bearing pressure on the 
slider is in the range of 2, 630 to 13,370 psi (18.1 to 92.2 MPa). The data in Appendix A show the 
following: 

1. The behavior of the FP-DC bearing is rigid-elastic: the expected behavior of a FP-DC bearing 
with concave surfaces of equal radii and nearly equal friction coefficients for each of the two 
sliding surfaces.  Under such conditions, sliding occurs simultaneously and by equal amounts on 
the two concave surfaces. 

2. The effective radius of curvature, 1 1 2 2R h R h− + − , can be verified from the second slope of the 
hysteresis loop.  The theory predicts correctly the slope of the loop. 

3. The effective coefficient of sliding friction for the bearing is in the range of about 0.04 to 0.05, 
depending on the bearing pressure. 

Dataset 3 

This dataset was collected from tests of FP-DC bearings installed in the Teslin Bridge in Yukon, Canada: 
a bridge rehabilitated in 2004 using FP-DC bearings. Appendix B presents drawings of the two types of 
bearings used in this bridge. The bearings include concave parts with equal radii of curvature and nearly 
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identical coefficients of sliding friction. The test results presented in Appendix B are force-displacement 
loops for the large type bearing at three different vertical loads, normal temperature and speeds less than 
or equal to 25 mm/sec. The tested bearing has 1 2 39in. 991mmR R= = =  and an effective radius of 
curvature of 74 in. (1880 mm). The force-displacement loops exhibit rigid-linear behavior with a stiffness 
consistent with an effective radius of curvature of 74 in. 
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5.  APPLICATIONS OF FP-DC BEARINGS 
 
FP-DC bearings were first applied in Japan on a small number of buildings. Information exists only for 
one of these buildings since it was instrumented and experienced a small earthquake on June 7, 2000.  
The building is the Technical Research Laboratory of Magara Construction Company in Ishikawa 
(Hyakuda et al., 2001). The building has a total floor area of 15,770 square feet (=1,465 square meters), is 
two-stories in height, is constructed of reinforced and prestressed concrete and is supported by 12 FP-DC 
bearings with each concave surface having a radius equal to 98.4 in. (2,500 mm). The bearings are 
subjected to an average pressure of about 2,500 psi (17.5 MPa) and have an effective coefficient of 
sliding friction at large sliding velocities (above 200 mm/sec) equal to about 0.04. The earthquake of June 
7, 2000 produced peak ground acceleration at the site of 0.149 g, which although low, was sufficient to 
activate the FP-DC bearings. Table 5.1 below presents peak values of recorded acceleration response in 
the two principal horizontal directions of the building. 
 

Table 5.1:  Recorded Response of the Managa Construction Research Laboratory  
 

 
Location 

Peak acceleration 
EW direction 

(g) 

Peak acceleration 
NS direction 

(g) 

Roof 0.069 0.125 

First floor 0.054 0.089 

Base above isolators 0.068 0.096 

Ground below isolators 0.079 0.149 
 
A displacement recorder in the building provided information on the peak isolation system displacement, 
equal to 5mm. There was no permanent displacement. Analysis showed a peak displacement of 6 mm, 
which is consistent with the observed 5 mm, and a permanent displacement of about 2 mm. The beneficial 
effects of isolation were clearly evident in this building even though the bearing displacements were very 
small. See Tsopelas et al. (1996a, 1996b) for experimental results that support this behavior for sliding 
isolation systems. 
 
The first application of FP-DC bearings in North America is the Teslin Bridge, Yukon, Canada. This 
bridge was rehabilitated in 2004 using the two types of FP-DC bearings of Appendix B.  Eight bearings of 
the large type and 28 bearings of the small type were used. 
 



 12 

6.  ANALYSIS AND DESIGN CONSIDERATIONS FOR FP-DC BEARINGS 
  
This section contains information on (a) P-∆ moment transfer by FP-DC bearings, (b) modeling of FP-DC 
bearings for dynamic analysis, and (c) property modification factor analysis and suggested values of λ-
factors for FP-DC bearings. 
  
Ρ − ∆  Moment Transfer by FP-DC Bearings  
 
Herein P is defined is the axial load on the bearing and ∆ is defined as the bearing displacement (relative 
displacement of the top concave plate with respect to the bottom concave plate).  While in conventional 
FP bearings the Ρ − ∆ moment is transferred on the side of the (single) concave plate, in the FP-DC 
bearing the Ρ − ∆  moment is divided among the two concave plates.   The moments transferred to the top 
and bottom concave plates are given by 1P×u  and 2P×u , respectively, where 1u and 2u  are given by 

equations (14) and (15).   In the case of FP-DC bearings with 1 1 2 2R - h = R - h  and 1 2µ µ≈ , 

displacements 1u and 2u  are each effectively equal to 
2
∆

 and the moment transferred on each concave 

plate is equal to 
P

2
⋅ ∆

 .   

 
Modeling of FP-DC Bearings for Dynamic Analysis  
 
Modeling of FP-DC bearings in commonly used computer programs for the dynamic analys is of 
seismically isolated structures (e.g., SAP2000 and 3D-BASIS) is currently possible only in the case in 
which 1 1 2 2R - h = R - h  and 1 2µ µ≈ .   This situation might be typical of FP-DC bearings.  The behavior 
of the bearing can be modeled as that of a conventional FP bearing with radius of curvature equal to 

1 1 2 2R h R h− + − and coefficient of friction as determined by experiment.  The velocity dependence of the 
coefficient of friction is typically described by  
 
 max max minµ= f -(f - f )exp(-a V )                          (18) 
 
where V is the velocity of the top concave plate with respect to the bottom concave plate, maxf and 

minf are, respectively the sliding coefficients of friction at large velocity of sliding and at nearly zero 

velocity of sliding and a is parameter that controls the transition from minf to maxf .  Typically only 

parameter maxf is determined in the prototype bearing testing program, whereas parameter minf is selected  
on the basis of available experimental results (e.g., as described in Constantinou et al, 1999).  Parameter 
a is also selected on the basis of available experimental results.  For example, Constantinou et al, 1999 
suggest a value of 100 sec/m  for interfaces consisting of polished stainless steel and the PTFE composite 
used in FP bearings for building applications. However, in FP-DC bearings the velocity of relevance is 
the one on the sliding interfaces which is less than velocityV .  For FP-DC bearings with 1 1 2 2R - h = R - h  

and 1 2µ µ≈ , the velocity on each sliding interface is nearly equal toV/2 .  Therefore, equation (18) may 

be used for FP-DC bearings but with parameter a having half value or 50 sec/m  for the typical interface 
used in building applications. 
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Property Modification Factor Analysis and Suggested Values of λ-Factors   
 
The concept of bounding analysis on the basis of system property modification factors or λ-factors is 
described in Constantinou et al (1999) and it is found in the 1999 AASHTO Guide Specifications for 
Seismic Isolation Design.   The method is a systematic procedure for calculating upper and lower bound 
values for the mechanical properties of seismic isolators given due account to aging, contamination, 
history of loading, temperature and other effects.   For FP bearings, only the coefficient of friction is a 
parameter that is affected by the aforementioned effects.   The system property modification factors for 
FP-DC bearings are the same as those of conventional (single concave) FP bearings except for the case of 
the contamination factor.  That factor should be calculated as the weighted average of the contamination 
factor values for the two interfaces, of which the one is facing down (interface 1) and the other is facing 
up(interface 2): 
 
 

 c1 1 1 1 c2 2 2 2
c

1 1 1 2 2 2

µ (R - h )+ µ (R - h )
=

µ (R - h ) + µ ( R - h )
λ λ

λ  (19) 

 
where c1λ and c2λ are the λ-factors for contamination of interfaces 1 and 2, respectively. In the case of 

FP-DC bearings with 1 1 2 2R - h = R - h and 1 2µ µ≈ , cλ becomes the average of c1λ and c2λ . 
 
 
As an example consider FP-DC bearings with 1 1 2 2R - h = R - h and 1 2µ µ≈ .  The nominal value of the 
coefficient of friction is 0.05.  The conditions of operation of the bearings are: (a) normal environment 
(non-corrosive), (b) bearings will be sealed in order to prevent contamination, (c) application is in a 
building structure so that cumulative travel is not considered, (d) bearings will be in controlled 
environment so that low temperature effects are not considered, (e) lifetime for the bearings is 30 to 50 
years, (f) the sliding interfaces are not lubricated, and (g) the application is important so that adjustments 
on the λ-factors to account for the very small probability of concurrent occurrence of several extreme 
events (maximum earthquake, maximum corrosion, etc.) will not be considered. 
 
A nominal value of 0.05 for the coefficient of friction implies that values of the coefficient of friction of 
fresh (non-aged) bearings under normal temperature conditions will be in the following ranges (these 
ranges will have to be specified in the project specifications): 
 

1. For each tested bearing, the 3-cycle value (this is the average of three values, each determined in 
one of three consecutive cycles of testing)of the coefficient of friction at large velocity of sliding 
is in the range of 0.04 to 0.06. 

 
2. Among all tested bearings, the average 3-cycle value of the coefficient of friction at large velocity 

of sliding is in the range of 0.045 to 0.055. 
 
3.  Among all tested bearings, the average value of the first cycle coefficient of friction at large 

velocity of sliding is less than 0.06. 
 
Therefore, the minimum and maximum values of the coefficient of friction at large velocity of sliding ( 
values of maxf ) are 0.045 and 0.060, respectively. 
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The λ-factors are as follows (Constantinou et al, 1999 and AASHTO, 1999)  For aging, aλ =1.1 (normal 

environment and sealed bearing); for contamination on the top sliding interface c1λ =1.0 (sealed, non-

lubricated interface facing down); and for contamination on the bottom sliding interface c2λ =1.1 (sealed, 

non-lubricated interface facing up).  On the basis of equation (19), c 1.05λ = .  Without adjustments, the 

value of the λ-factor is max a c 1.1 1.05 1.155λ λ λ= ⋅ = × = .    
 
The upper and lower values of the coefficient of friction maxf  for analysis are: 
 
Lower bound value:  0.045 
 
Upper bound value: max 0.06 1.115 0.06 0.069λ × = × = . 
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Figure 1:  Section through a FP-DC Bearing, (a) zero displacement, (b) displaced with 
sliding on the lower concave surface only, and (c) maximum displacement 

 



 
 

 
Figure 2:  Small-scale FP-DC bearing with assembled articulated slider 

 



 
 

Figure 3:  Small-scale FP-DC bearing with disassembled articulated slider 
 
 
 



 
 

 
Figure 4:  Assembled small-scale FP-DC bearing 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 
 
 
 
 

 
 
 

Figure 5:  Free body diagram of articulated slider of FP-DC bearing during sliding on the 
upper concave surface 

 
 
 
 
 
 
 
 
 

 



 
 
 

 
 
 
 

 
Figure 6:  Generic force-displacement relation of FP-DC bearing 

 
 
 
 
 
 
 

 



 
 
 
 
 

Figure 7:  Force-displacement relationships for FP-DC bearings 
(a) R1-h1=R2-h2=84 in., µ1=0.045, µ2=0.055  

(b)  R1-h1=39 in., R2-h2=120 in., µ1=0.03, µ2=0.06 
 
 
 
 
 



 
 
 
 

 
 
 
 
 
 

Figure 8:  Small scale FP-DC bearing tested at the University at Buffalo 
 



 
 
 

Figure 9: View of small scale FP bearing in testing machine at the University at Buffalo 
 



 
 
 

Figure 10: View of small scale FP bearing at extreme negative displacement during 
testing at the University at Buffalo 

 



 
 
 
 

Figure 11: View of small scale FP bearing at extreme positive displacement during 
testing at the University at Buffalo 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 12: Recorded histories of displacement and velocity in test on small scale FP 
bearing with nearly equal coefficients of friction at the two sliding interfaces 

 
 
 

0 5 10 15 20 25 30
-5

0

5

D
is

p
la

ce
m

en
t 

(i
n

)

Total Bearing Displacement

0 5 10 15 20 25 30
-5

0

5

D
is

pl
ac

em
en

t 
(in

)

Displacement on Top Concave Surface

0 5 10 15 20 25 30
-5

0

5

Time (sec)

D
is

p
la

ce
m

en
t 

(i
n

)

 Displacement on Bottom Concave Surface

0 5 10 15 20 25 30
-4

-2

0

2

4

V
el

oc
ity

 (i
n/

se
c)

Total Bearing Velocity

0 5 10 15 20 25 30
-4

-2

0

2

4

V
el

o
ci

ty
 (

in
/s

ec
)

Sliding Velocity on Top Concave Surface

0 5 10 15 20 25 30
-4

-2

0

2

4

Time (sec)

V
el

o
ci

ty
 (

in
/s

ec
)

 Sliding Velocity on Bottom Concave Surface



 
 

 
 

 
 

Figure 13: Recorded loops of normalized lateral force- lateral displacement in test on 
small scale FP bearing with nearly equal coefficients of friction at the two sliding 

interfaces 
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Figure 14: Recorded histories of displacement and velocity in test on small scale FP 
bearing with unequal coefficients of friction at the two sliding interfaces 
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Figure 15: Recorded loops of normalized lateral force- lateral displacement in test on 
small scale FP bearing with unequal coefficients of friction at the two sliding interfaces 
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Figure 16: Graphical estimation of parameters from recorded loops of normalized lateral 
force- lateral displacement in test on small scale FP bearing with unequal coefficients of 

friction at the two sliding interfaces 
 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17:  Demonstration FP-DC bearing tested by EPS, Inc. 
 
 



 
 
 

 
 
 

Figure 18:  Views of demonstration FP-DC bearing tested by EPS, Inc. 
 



 
 
 
 
 
 
 
 
 
 

APPENDIX A 
 

EXPERIMENTAL RESULTS FOR DEMONSTRATION  
FP-DC BEARING 



















 
 
 
 
 
 
 
 
 
 

APPENDIX B 
 

EXPERIMENTAL RESULTS FOR FP-DC BEARING FOR 
TESLIN RIVER BRIDGE, YUKON, CANADA 














